Skip to main content
Log in

Influence of dephasing on the entanglement teleportation via a two-qubit Heisenberg XYZ system

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We study the entanglement dynamics of an anisotropic two-qubit Heisenberg XYZ system in the presence of intrinsic decoherence. The usefulness of such a system for performance of the quantum teleportation protocol \(\mathcal{T}_0\) and entanglement teleportation protocol \(\mathcal{T}_1\) is also investigated. The results depend on the initial conditions and the parameters of the system. The roles of system parameters such as the inhomogeneity of the magnetic field b and the spin-orbit interaction parameter D, in entanglement dynamics and fidelity of teleportation, are studied for both product and maximally entangled initial states of the resource. We show that for the product and maximally entangled initial states, increasing D amplifies the effects of dephasing and hence decreases the asymptotic entanglement and fidelity of the teleportation. For a product initial state and specific interval of the magnetic field B, the asymptotic entanglement and hence the fidelity of teleportation can be improved by increasing B. The XY and XYZ Heisenberg systems provide a minimal resource entanglement, required for realizing efficient teleportation. Also, in the absence of the magnetic field, the degree of entanglement is preserved for the maximally entangled initial states \(\left| {\psi \left. {\left( 0 \right)} \right\rangle = \frac{1} {{\sqrt 2 }}\left( {\left| {\left. {00} \right\rangle \pm } \right|\left. {11} \right\rangle } \right)} \right.\). The same is true for the maximally entangled initial states \(\left| {\psi \left. {\left( 0 \right)} \right\rangle = \frac{1} {{\sqrt 2 }}\left( {\left| {\left. {01} \right\rangle \pm } \right|\left. {10} \right\rangle } \right)} \right.\), in the absence of spin-orbit interaction D and the inhomogeneity parameter b. Therefore, it is possible to perform quantum teleportation protocol \(\mathcal{T}_0\) and entanglement teleportation \(\mathcal{T}_1\), with perfect quality, by choosing a proper set of parameters and employing one of these maximally entangled robust states as the initial state of the resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Neilsen, I.L. Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, UK, 2004)

  2. J. Audretsch, Entangled systems (Wiley-VCH Weinheim, 2007)

  3. V. Vedral, Introduction to Quantum Information Science (Oxford University Press Inc., New York, 2006)

  4. R.F. Werner, Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  5. J. Eisert, Entanglement in Information Theory, Ph.D. thesis, The University of Postdam, 2001 (unpublished)

  6. C.H. Bennett, G. Brassard, C. Crepeau, R. Josza, A. Peres, W.K. Wooters, Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. S. Popescu, Phys. Rev. Lett. 72, 797 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. A 60, 1888 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  9. G. Bowen, S. Bose, Phys. Rev. Lett. 87, 267901 (2001)

    Article  ADS  Google Scholar 

  10. J. Lee, M.S. Kim, Phys. Rev. Lett. 84, 4236 (2000)

    Article  ADS  Google Scholar 

  11. M. Schlosshauer, Decoherence and the quantum to classical transitions (Springer, 2007)

  12. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

  13. F. Kheirandish, S.J. Akhtarshenas, H. Mohammadi, Eur. Phys. J. D 57, 129 (2010)

    Article  ADS  Google Scholar 

  14. H. Moya-Cessa, V. Buzek, M.S. Kim, P.L. Knight, Phys. Rev. A 48, 3900 (1993)

    Article  ADS  Google Scholar 

  15. G.J. Milburn, Phys. Rev. A 44, 5401 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  16. J. Xu, X. Zou, Phys. Rev. A 60, 4743 (1999)

    Article  ADS  Google Scholar 

  17. J.L. Guo, H.S. Song, Phys. Scr. 78, 045002 (2008)

    Article  ADS  Google Scholar 

  18. F. Kheirandish, S.J. Akhtarshenas, H. Mohammadi, Phys. Rev. A 77, 042309 (2008)

    Article  ADS  Google Scholar 

  19. Y. Yeo, T. Liu, Y. Lu, Q. Yang, J. Phys. A 38, 3235 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Z. He, Z. Xiong, Y. Zhang, Phys. Lett. A 354, 79 (2006)

    Article  ADS  Google Scholar 

  21. J.L. Guo, Y. Xia, H.S. Song, Opt. Commun. 281, 2326 (2008)

    Article  ADS  Google Scholar 

  22. X. Wang, Phys. Rev. A 64, 012313 (2001)

    Article  ADS  Google Scholar 

  23. X. Wang, H. Fu, A.I. Solomon, J. Phys. A 34, 11307 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. H. Fu, A.I. Solomon, X. Wang, J. Phys. A 35, 4293 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. D. Loss, D.P. Divincenzo, Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  26. D. DiVincenzo, Phys. Rev. A 51, 1015 (1995)

    Article  ADS  Google Scholar 

  27. W.A. Coish, D. Loss, e-print arXiv:cond-mat/0606550

  28. I. Dzyaloshinski, J. Phys. Chem. Sol. 4, 241 (1958)

    Article  ADS  Google Scholar 

  29. T. Moriya, Phys. Rev. 117, 635 (1960)

    Article  ADS  Google Scholar 

  30. T. Moriya, Phys. Rev. Lett. 4, 228 (1960)

    Article  ADS  Google Scholar 

  31. T. Moriya, Phys. Rev. 120, 91 (1960)

    Article  ADS  Google Scholar 

  32. R.C. Drumond, M.O. Terra Cunha, e-print arXiv: quant-ph/0809.4445

  33. M.O. Terra Cunha, New J. Phys. 9, 237 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  34. R. Josza, J. Mod. Opt. 41, 2315 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadi, H., Akhtarshenas, S.J. & Kheirandish, F. Influence of dephasing on the entanglement teleportation via a two-qubit Heisenberg XYZ system. Eur. Phys. J. D 62, 439–447 (2011). https://doi.org/10.1140/epjd/e2011-10601-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2011-10601-y

Keywords

Navigation