Skip to main content
Log in

A density functional global optimisation study of neutral 8-atom Cu-Ag and Cu-Au clusters

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The effect of doping on the energetics and dimensionality of eight atom coinage metal subnanometre particles is fully resolved using a genetic algorithm in tandem with on the fly density functional theory calculations to determine the global minima (GM) for Cu n Ag(8−n) and Cu n Au(8−n) clusters. Comparisons are made to previous ab initio work on mono- and bimetallic clusters, with excellent agreement found. Charge transfer and geometric arguments are considered to rationalise the stability of the particular permutational isomers found. An interesting transition between three dimensional and two dimensional GM structures is observed for copper-gold clusters, which is sharper and appears earlier in the doping series than is known for gold-silver particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Xu, W.A. Shelton, W.F. Schneider, J. Phys. Chem. A 110, 5839 (2006)

    Article  Google Scholar 

  2. Y. Xu, W.A. Shelton, W.F. Schneider, J. Phys. Chem. B 110, 16591 (2006)

    Article  Google Scholar 

  3. A. Sebetci, Phys. Chem. Chem. Phys. 11, 921 (2009)

    Article  Google Scholar 

  4. A. Sebetci, Chem. Phys. 331, 9 (2006)

    Article  ADS  Google Scholar 

  5. J.C. Idrobo, W. Walkosz, S.F. Yip, S. Oeguet, J. Wang, J. Jellinek, Phys. Rev. B 76, 205422 (2007)

    Article  ADS  Google Scholar 

  6. F.Y. Chen, R.L. Johnston, Appl. Phys. Lett. 90, 153123 (2007)

    Article  ADS  Google Scholar 

  7. I.L. Garzon, I.G. Kaplan, R. Santamaria, O. Novaro, J. Chem. Phys. 109, 2176 (1998)

    Article  ADS  Google Scholar 

  8. W. Huang, R. Pal, L.-M. Wang, X.C. Zeng, L.-S. Wang, J. Chem. Phys. 132, 114306 (2010)

    Article  ADS  Google Scholar 

  9. H.M. Lee, M.F. Ge, B.R. Sahu, P. Tarakeshwar, K.S. Kim, J. Phys. Chem. B 107, 9994 (2003)

    Article  Google Scholar 

  10. S. Lee, C.Y. Fan, T.P. Wu, S.L. Anderson, J. Chem. Phys. 123, 124710 (2005)

    Article  ADS  Google Scholar 

  11. S. Lee, C.Y. Fan, T.P. Wu, S.L. Anderson, J. Phys. Chem. B 109, 11340 (2005)

    Article  Google Scholar 

  12. S. Lee, B. Lee, F. Mehmood, S. Seifert, J.A. Libera, J.W. Elam, J. Greeley, P. Zapol, L.A. Curtiss, M.J. Pellin, P.C. Stair, R.E. Winans, S. Vajda, J. Phys. Chem. C 114, 10342 (2010)

    Article  Google Scholar 

  13. S. Vajda, M.J. Pellin, J.P. Greeley, C.L. Marshall, L.A. Curtiss, G.A. Ballentine, J.W. Elam, S. Catillon-Mucherie, P.C. Redfern, F. Mehmood, P. Zapol, Nat. Mater. 8, 213 (2009)

    Article  ADS  Google Scholar 

  14. D.J. Harding, C. Kerpal, D.M. Rayner, A. Fielicke, J. Chem. Phys. 136, 211103 (2012)

    Article  ADS  Google Scholar 

  15. P. Gruene, A. Fielicke, G. Meijer, D.M. Rayner, Phys. Chem. Chem. Phys. 10, 6144 (2008)

    Article  Google Scholar 

  16. A. Fielicke, G. von Helden, G. Meijer, D.B. Pedersen, B. Simard, D.M. Rayner, J. Chem. Phys. 124, 194305 (2006)

    Article  ADS  Google Scholar 

  17. S. Ogut, J.C. Idrobo, J. Jellinek, J. Wang, J. Cluster Sci. 17, 609 (2006)

    Article  Google Scholar 

  18. J. Ho, K.M. Ervin, W.C. Lineberger, J. Chem. Phys. 93, 6987 (1990)

    Article  ADS  Google Scholar 

  19. P. Gruene, D.M. Rayner, B. Redlich, A.F.G. van der Meer, J.T. Lyon, G. Meijer, A. Fielicke, Science 321, 674 (2008)

    Article  ADS  Google Scholar 

  20. S. Gilb, P. Weis, F. Furche, R. Ahlrichs, M.M. Kappes, J. Chem. Phys. 116, 4094 (2002)

    Article  ADS  Google Scholar 

  21. F. Furche, R. Ahlrichs, P. Weis, C. Jacob, S. Gilb, T. Bierweiler, M.M. Kappes, J. Chem. Phys. 117, 6982 (2002)

    Article  ADS  Google Scholar 

  22. B. Yoon, H. Hakkinen, U. Landman, A.S. Worz, J.M. Antonietti, S. Abbet, K. Judai, U. Heiz, Science 307, 403 (2005)

    Article  ADS  Google Scholar 

  23. D. Schooss, P. Weis, O. Hampe, M.M. Kappes, Philos. Trans. Roy. Soc. Math. Phys. Eng. Sci. 368, 1211 (2010)

    Article  ADS  Google Scholar 

  24. P. Weis, T. Bierweiler, S. Gilb, M.M. Kappes, Chem. Phys. Lett. 355, 355 (2002)

    Article  ADS  Google Scholar 

  25. A. Fielicke, I. Rabin, G. Meijer, J. Phys. Chem. A 110, 8060 (2006)

    Article  Google Scholar 

  26. C.Y. Cha, G. Gantefor, W. Eberhardt, J. Chem. Phys. 99, 6308 (1993)

    Article  ADS  Google Scholar 

  27. M. Haruta, Chem. Rec. 3, 75 (2003)

    Article  Google Scholar 

  28. R. Fournier, J. Chem. Phys. 115, 2165 (2001)

    Article  ADS  Google Scholar 

  29. M. Yang, F. Yang, K.A. Jackson, J. Jellinek, J. Chem. Phys. 132, 064306 (2010)

    Article  ADS  Google Scholar 

  30. M. Yang, K.A. Jackson, J. Jellinek, J. Chem. Phys. 125, 144308 (2006)

    Article  ADS  Google Scholar 

  31. R. Santamaria, I.G. Kaplan, O. Novaro, Chem. Phys. Lett. 218, 395 (1994)

    Article  ADS  Google Scholar 

  32. E.M. Fernandez, J.M. Soler, I.L. Garzon, L.C. Balbas, Phys. Rev. B 70, 165403 (2004)

    Article  ADS  Google Scholar 

  33. M.N. Huda, A.K. Ray, Phys. Rev. A 67, 013201 (2003)

    Article  ADS  Google Scholar 

  34. M.N. Huda, A.K. Ray, Eur. Phys. J. D 22, 217 (2003)

    Article  ADS  Google Scholar 

  35. S. Heiles, A.J. Logsdail, R. Schaefer, R.L. Johnston, Nanoscale 4, 1109 (2012)

    Article  ADS  Google Scholar 

  36. E.B. Guidez, V. Mäkinen, H. Häkkinen, C.M. Aikens, J. Phys. Chem. C 116, 20617 (2012)

    Article  Google Scholar 

  37. V. Bonacic-Koutecky, M. Boiron, J. Pittner, P. Fantucci, J. Koutecky, Eur. Phys. J. D 9, 183 (1999)

    Article  ADS  Google Scholar 

  38. H. Hakkinen, M. Moseler, U. Landman, Phys. Rev. Lett. 89, 176103 (2002)

    Article  ADS  Google Scholar 

  39. C. Massobrio, A. Pasquarello, R. Car, Chem. Phys. Lett. 238, 215 (1995)

    Article  ADS  Google Scholar 

  40. V. Bonacic-Koutecky, J. Burda, R. Mitric, M.F. Ge, G. Zampella, P. Fantucci, J. Chem. Phys. 117, 3120 (2002)

    Article  ADS  Google Scholar 

  41. K. Michaelian, N. Rendon, I.L. Garzon, Phys. Rev. B 60, 2000 (1999)

    Article  ADS  Google Scholar 

  42. J. Zhao, Y. Luo, G. Wang, Eur. Phys. J. D 14, 309 (2001)

    Article  ADS  Google Scholar 

  43. R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108, 845 (2008)

    Article  Google Scholar 

  44. V. Bonacic-Koutecky, V. Veyret, R. Mitric, J. Chem. Phys. 115, 10450 (2001)

    Article  ADS  Google Scholar 

  45. G. Barcaro, A. Fortunelli, Faraday Discuss. 138, 37 (2008)

    Article  ADS  Google Scholar 

  46. F.R. Negreiros, E. Apra, G. Barcaro, G. Sementa, A. Fortunelli, Nanoscale 4, 1208 (2012)

    Article  ADS  Google Scholar 

  47. R.L. Johnston, Dalton Trans. 22, 4193 (2003)

    Article  ADS  Google Scholar 

  48. P. Giannozzin, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys.: Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  49. D.M. Deaven, K.M. Ho, Phys. Rev. Lett. 75, 288 (1995)

    Article  ADS  Google Scholar 

  50. A.M. Rappe, K.M. Rabe, E. Kaxiras, J.D. Joannopoulos, Phys. Rev. B 41, 1227 (1990)

    Article  ADS  Google Scholar 

  51. D. Vanderbilt, Phys. Rev. B 32, 8412 (1985)

    Article  ADS  Google Scholar 

  52. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  53. M. Methfessel, A.T. Paxton, Phys. Rev. B 40, 3616 (1989)

    Article  ADS  Google Scholar 

  54. W. Tang, E. Sanville, G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009)

    Article  ADS  Google Scholar 

  55. G.H. Guvelioglu, P.P. Ma, X.Y. He, R.C. Forrey, H.S. Cheng, Phys. Rev. Lett. 94, 026103 (2005)

    Article  ADS  Google Scholar 

  56. K. Baishya, J.C. Idrobo, S. Ogut, M. Yang, K.A. Jackson, J. Jellinek, Phys. Rev. B 83, 245402 (2011)

    Article  ADS  Google Scholar 

  57. S. Darby, T.V. Mortimer-Jones, R.L. Johnston, C. Roberts, J. Chem. Phys. 116, 1536 (2002)

    Article  ADS  Google Scholar 

  58. F. Chen, R.L. Johnston, Acta Mater. 56, 2374 (2008)

    Article  Google Scholar 

  59. www.bear.bham.ac.uk, accessed 19/12/2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Heard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heard, C., Johnston, R. A density functional global optimisation study of neutral 8-atom Cu-Ag and Cu-Au clusters. Eur. Phys. J. D 67, 34 (2013). https://doi.org/10.1140/epjd/e2012-30601-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30601-7

Keywords

Navigation