Skip to main content
Log in

Dynamics of exact solutions of nonlinear resonant Schrödinger equation utilizing conformable derivatives and stability analysis

  • Regular Article – Nonlinear Dynamics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, we consider the conformable resonant nonlinear Schrödinger equation (CRNLSE) incorporating Kerr law nonlinearity and provide some new analytical solutions. Three analytical methods such as the Exp-function method, modified \(\exp (-\Phi (\eta ))\)-expansion function method, and \(\exp (-\Phi (\eta ))\)-expansion function method are utilized to handle this problem. These methods yield various innovative and fascinating solutions, including trigonometric, exponential, periodic, bright, singular, dark, and rational solutions, as well as their constraint conditions. Moreover the modulation instability (MI) of the consider model is also investigated. For each solution discovered, 2D, 3D, and contour plots are also sketched to clarify their physical configuration. The reported solutions enhance the previously established results. The solutions demonstrate that these methods are efficient and effective for locating traveling wave solutions and could be a beneficial tool for handling other complex nonlinear partial differential equations (NLPDEs) emerge in diversified scientific fields such as hydrodynamics, nonlinear optics, nonlinear fibers and plasmas.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors comment: Data sharing not applicable to this article as no datasets were generated or analysed during the current study.]

References

  1. Z.Z. Sun, G.H. Gao, Fractional differential equations, by Fractional Differential Equations. De Gruyter (2020)

  2. K.M. Owolabi, E. Pindza, Spatiotemporal chaos in diffusive systems with the Riesz fractional order operator. Chin. J. Phys. 77, 2258–2275 (2022)

    Article  MathSciNet  Google Scholar 

  3. Y.J. Yu, L.J. Zhao, Fractional thermoelasticity revisited with new definitions of fractional derivative. Eur. J. Mech.-A/Solids 84, 104043 (2020)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. S. Kheybari, Numerical algorithm to Caputo type time-space fractional partial differential equations with variable coefficients. Math. Comput. Simul. 182, 66–85 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. M.S. Osman, H. Almusawa, K.U. Tariq, S. Anwar, S. Kumar, M. Younis, W.X. Ma, On global behavior for complex soliton solutions of the perturbed nonlinear Schrödinger equation in nonlinear optical fibers. J. Ocean Eng. Sci. 7(5), 431–443 (2022)

    Article  Google Scholar 

  6. S.A. El-Tantawy, A.H. Salas, M.R. Alharthi, On the analytical and numerical solutions of the linear damped NLSE for modeling dissipative freak waves and breathers in nonlinear and dispersive mediums: an application to a pair-Ion plasma. Front. Phys. 9, 580224 (2021)

    Article  Google Scholar 

  7. T.S. Raju, C.N. Kumar, P.K. Panigrahi, On exact solitary wave solutions of the nonlinear Schrödinger equation with a source. J. Phys. A Math. Gen. 38(16), L271–L276 (2005)

    Article  MATH  Google Scholar 

  8. Y. Wang, W.R. Shan, X. Zhou, P.P. Wang, Exact solutions and bifurcation for the resonant nonlinear Schrödinger equation with competing weakly nonlocal nonlinearity and fractional temporal evolution. Waves Random Complex Media 31(6), 1859–1878 (2021)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. H. Rezazadeh, R. Abazari, M.M. Khater, M. Inc, D. Baleanu, New optical solitons of conformable resonant nonlinear Schrödinger’s equation. Open Phys. 18(1), 761–769 (2020)

    Article  Google Scholar 

  10. K. Hosseini, M. Matinfar, M. Mirzazadeh, A (3+ 1)-dimensional resonant nonlinear Schrödinger equation and its Jacobi elliptic and exponential function solutions. Optik 207, 164458 (2020)

    Article  ADS  Google Scholar 

  11. E. Tala-Tebue, A.R. Seadawy, Construction of dispersive optical solutions of the resonant nonlinear Schrödinger equation using two different methods. Mod. Phys. Lett. B 32(33), 1850407 (2018)

    Article  ADS  Google Scholar 

  12. S. Arshed, N. Raza, Optical solitons perturbation of Fokas-Lenells equation with full nonlinearity and dual dispersion. Chin. J. Phys. 63, 314–324 (2020)

    Article  MathSciNet  Google Scholar 

  13. S.U. Rehman, M. Bilal, J. Ahmad, New exact solitary wave solutions for the 3D-FWBBM model in arising shallow water waves by two analytical methods. Results Phys. 25, 104230 (2021)

    Article  Google Scholar 

  14. S.U. Rehman, J. Ahmad, Diverse optical solitons to nonlinear perturbed Schrödinger equation with quadratic-cubic nonlinearity via two efficient approaches. Phys. Scr. 98(3), 035216 (2023)

    Article  ADS  Google Scholar 

  15. X. Hu, Z. Yin, A study of the pulse propagation with a generalized Kudryashov equation. Chaos Solitons Fractals 161, 112379 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Ahmad, Z. Mustafa, A. Zulfiqar, Solitonic solutions of two variants of nonlinear Schrödinger model by using exponential function method. Opt. Quant. Electron. 55(7), 633 (2023)

    Article  Google Scholar 

  17. S. Akram, J. Ahmad, S. Sarwar, A. Ali, Dynamics of soliton solutions in optical fibers modelled by perturbed nonlinear Schrödinger equation and stability analysis. Opt. Quant. Electron. 55(5), 450 (2023)

    Article  Google Scholar 

  18. S. Duran, B. Karabulut, Nematicons in liquid crystals with Kerr Law by sub-equation method. Alex. Eng. J. 61(2), 1695–1700 (2022)

    Article  Google Scholar 

  19. A. Tripathy, S. Sahoo, H. Rezazadeh, Z.P. Izgi, M.S. Osman, Dynamics of damped and undamped wave natures in ferromagnetic materials. Optik 281, 170817 (2023)

    Article  ADS  Google Scholar 

  20. J. Ahmad, Dispersive multiple lump solutions and soliton’s interaction to the nonlinear dynamical model and its stability analysis. Eur. Phys. J. D 76(1), 14 (2022)

    Article  ADS  Google Scholar 

  21. A. Aniqa, J. Ahmad, Soliton solution of fractional Sharma-Tasso-Olever equation via an efficient (G’/G)-expansion method. Ain Shams Eng. J. 13(1), 101528 (2022)

    Article  Google Scholar 

  22. S. Zhang, H.Q. Zhang, An exp-function method for new N-soliton solutions with arbitrary functions of a (2+ 1)-dimensional vcBK system. Comput. Math. Appl. 61(8), 1923–1930 (2011)

    MathSciNet  MATH  Google Scholar 

  23. J. Biazar, Z. Ayati, Exp and modified Exp function methods for nonlinear Drinfeld-Sokolov system. J. King Saud Univ. Sci. 24(4), 315–318 (2012)

    Article  Google Scholar 

  24. M.A. Abdelrahman, E.H. Zahran, M.M. Khater, The exp\((-\Phi (\eta ))\)-expansion method and its application for solving nonlinear evolution equations. Int. J. Mod. Nonlinear Theory Appl. 4(01), 37 (2015)

    Article  Google Scholar 

  25. R.D. Pankaj, A. Kumar, B. Singh, M.L. Meena, exp\((-\Phi (\eta ))\)-expansion method for soliton solution of nonlinear Schrödinger system. J. Interdiscip. Math. 25(1), 89–97 (2022)

    Article  Google Scholar 

  26. M. Ilie, J. Biazar, Z. Ayati, Resonant solitons to the nonlinear Schrödinger equation with different forms of nonlinearities. Optik 164, 201–209 (2018)

    Article  ADS  Google Scholar 

  27. M. Eslami, M. Mirzazadeh, A. Biswas, Soliton solutions of the resonant nonlinear Schrödinger’s equation in optical fibers with time dependent coefficients by simplest equation approach. J. Mod. Opt. 60(19), 1627–1636 (2013)

    Article  ADS  Google Scholar 

  28. M. Mirzazadeh, M. Eslami, D. Milovic, A. Biswas, Topological solitons of resonant nonlinear Schödinger’sequation with dual-power law nonlinearity by \((\frac{G^{^{\prime }}}{G})\)-expansion technique. Optik 125(19), 5480–5489 (2014)

    Article  ADS  Google Scholar 

  29. Z. Korpinar, M. Inc, M. Bayram, M.S. Hashemi, New optical solitons for Biswas-Arshed equation with higher order dispersions and full nonlinearity. Optik 206, 163332 (2020)

    Article  ADS  Google Scholar 

  30. A. Zulfiqar, J. Ahmad, Soliton solutions of fractional modified unstable Schrödinger equation using Exp-function method. Results Phys. 19, 103476 (2020)

    Article  Google Scholar 

  31. M. Shakeel, B. Ahmad, N.A. Shah, J.D. Chung, Solitons solution of riemann wave equation via modified exp function method. Symmetry 14(12), 2574 (2022)

    Article  ADS  Google Scholar 

  32. A. Rani, M. Shakeel, M. Kbiri Alaoui, A.M. Zidan, N.A. Shah, P. Junsawang, Application of the exp-expansion method to find the soliton solutions in biomembranes and nerves. Mathematics 10(18), 3372 (2022)

    Article  Google Scholar 

  33. A.R. Seadawy, M. Bilal, M. Younis, S.T.R. Rizvi, Resonant optical solitons with conformable time-fractional nonlinear Schrödinger equation. Int. J. Mod. Phys. B 35(03), 2150044 (2021)

  34. M. Alabedalhadi, M. Al-Smadi, S. Al-Omari, D. Baleanu, S. Momani, Structure of optical soliton solution for nonliear resonant space-time Schrödinger equation in conformable sense with full nonlinearity term. Phys. Scr. 95(10), 105215 (2020)

  35. A. Iqbal, J. Ahmad, Q.M.U. Hassan, Application of an effective method on the system of nonlinear fuzzy integro-differential equations. J. Sci. Arts 21(2), 407–422 (2021)

    Article  Google Scholar 

  36. Y. Tian, J. Liu, A modified exp-function method for fractional partial differential equations. Therm. Sci. 25, 1237–1241 (2021)

    Article  Google Scholar 

  37. A. Zulfiqar, J. Ahmad, Exact solitary wave solutions of fractional modified Camassa-Holm equation using an efficient method. Alex. Eng. J. 59(5), 3565–3574 (2020)

  38. H.M. Baskonus, M.S. Osman, H.U. Rehman, M. Ramzan, M. Tahir, S. Ashraf, On pulse propagation of soliton wave solutions related to the perturbed Chen-Lee-Liu equation in an optical fiber. Opt. Quant. Electron. 53, 1–17 (2021)

    Article  Google Scholar 

  39. A. Zafar, M. Shakeel, A. Ali, L. Akinyemi, H. Rezazadeh, Optical solitons of nonlinear complex Ginzburg-Landau equation via two modified expansion schemes. Opt. Quant. Electron. 54, 1–15 (2022)

    Article  Google Scholar 

  40. S.U. Rehman, J. Ahmad, Dynamics of optical and other soliton solutions in fiber Bragg gratings with Kerr law and stability analysis. Arab. J. Sci. Eng. 48, 803–819 (2023)

    Article  Google Scholar 

  41. S.U. Rehman, J. Ahmad, Investigation of exact soliton solutions to Chen-Lee-Liu equation in birefringent fibers and stability analysis. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.05.026

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

JA: Resources, acquisition, Supervision, Writing - review and editing, Validation. ZM: Conceptualization, Methodology, Software, Writing - original draft. SUR: Software, Formal analysis, Writing-review and editing.

Corresponding author

Correspondence to Jamshad Ahmad.

Ethics declarations

Conflict of interest

The authors certify that they have no competing financial interests or personal relationship. The authors have no relevant financial or non-financial interests to disclose.

Ethics approval and consent to participate

Not Applicable.

Consent for pblication

All authors have agreed and have given their consent for the publication of this research paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, J., Mustafa, Z. & Shafqat-Ur-Rehman Dynamics of exact solutions of nonlinear resonant Schrödinger equation utilizing conformable derivatives and stability analysis. Eur. Phys. J. D 77, 123 (2023). https://doi.org/10.1140/epjd/s10053-023-00703-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-023-00703-8

Navigation