Skip to main content
Log in

Leak rate of seals: Effective-medium theory and comparison with experiment

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Seals are extremely useful devices to prevent fluid leakage. We present an effective-medium theory of the leak rate of rubber seals, which is based on a recently developed contact mechanics theory. We compare the theory with experimental results for seals consisting of silicon rubber in contact with sandpaper and sand-blasted PMMA surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Flitney, Seals and Sealing Handbook (Elsevier, 2007)

  2. M. Mofidi, B. Prakash, B.N.J. Persson, O. Albohr, J. Phys.: Condens. Matter 20, 085223 (2008)

    Article  ADS  Google Scholar 

  3. B.N.J. Persson, O. Albohr, U. Tartaglino, A.I. Volokitin, E. Tosatti, J. Phys.: Condens. Matter 17, R1 (2005)

    Article  ADS  Google Scholar 

  4. B. Lorenz, B.N.J. Persson, EPL 86, 44006 (2009)

    Article  ADS  Google Scholar 

  5. B.N.J. Persson, O. Albohr, C. Creton, V. Peveri, J. Chem. Phys. 120, 8779 (2004)

    Article  ADS  Google Scholar 

  6. B.N.J. Persson, C. Yang, J. Phys.: Condens. Matter 20, 315011 (2008)

    Article  ADS  Google Scholar 

  7. B.N.J. Persson, J. Chem. Phys. 115, 3840 (2001)

    Article  ADS  Google Scholar 

  8. B.N.J. Persson, Phys. Rev. Lett. 99, 125502 (2007)

    Article  ADS  Google Scholar 

  9. B.N.J. Persson, Surf. Sci. Rep. 61, 201 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  10. B.N.J. Persson, Eur. Phys. J. E 8, 385 (2002)

    Google Scholar 

  11. B.N.J. Persson, F. Bucher, B. Chiaia, Phys. Rev. B 65, 184106 (2002)

    Article  ADS  Google Scholar 

  12. C. Yang, B.N.J. Persson, J. Phys.: Condens. Matter 20, 215214 (2008)

    Article  ADS  Google Scholar 

  13. B.N.J. Persson, J. Phys.: Condens. Matter 20, 312001 (2008)

    Article  ADS  Google Scholar 

  14. The contact mechanics model developed in refs. JCPpers,PerssonPRL,PSSR,P1,Bucher,YangPersson,PerssonJPCM takes into account the elastic coupling between the contact regions in the nominal rubber-substrate contact area. Asperity contact models, such as the “standard” contact mechanics model of Greenwood-Williamson GW, and the model of Bush Bush, neglect this elastic coupling, which results in highly incorrect results Carlos,Carbone, in particular for the relations between the squeezing pressure and the interfacial separation Lorenz

  15. J.A. Greenwood, J.B.P. Williamson, Proc. R. Soc. London, Ser. A 295, 300 (1966)

    Article  ADS  Google Scholar 

  16. A.W. Bush, R.D. Gibson, T.R. Thomas, Wear 35, 87 (1975)

    Article  Google Scholar 

  17. C. Campana, M.H. Müser, M.O. Robbins, J. Phys.: Condens. Matter 20, 354013 (2008)

    Article  Google Scholar 

  18. G. Carbone, F. Bottiglione, J. Mech. Phys. Solids 56, 2555 (2008)

    Article  MATH  ADS  Google Scholar 

  19. B. Lorenz, B.N.J. Persson, J. Phys.: Condens. Matter 201, 015003 (2009)

    Article  ADS  Google Scholar 

  20. D. Stauffer, A. Aharony, An Introduction to Percolation Theory (CRC Press, 1991)

  21. See paper F in: F. Sahlin, Lubrication, contact mechanics and leakage between rough surfaces, PhD thesis (2008)

  22. Figure pic.Az.Azdz.rough(a) is schematic as in reality the contact islands at high enough magnification are fractal-like, and decreasing the magnification results in more complex changes than just adding strips (of constant width) of contact area to the periphery of the contact islands. However, this does not change our conclusions.

  23. In ref. YangPersson the probability distribution of interfacial separations 〈δ(uu(x))〉 as obtained from Molecular Dynamics calculations for self-affine fractal surfaces (with the fractal dimension D f = 2.2) was compared to the distribution of separations obtained from u 1(ζ). The former distribution was found to be about a factor of two wider than that obtained from u 1(ζ). This is consistent with the fact that u 1(ζ) is already an averaged separation and indicate that in this case α ≈ 0.5.

  24. D. Bruggeman, Ann. Phys. Leipzig 24, 636 (1935)

    Article  ADS  Google Scholar 

  25. V.N. Ambegaokar, B.I. Halperin, J.S. Langer, Phys. Rev. B 4, 2612 (1971)

    Article  ADS  Google Scholar 

  26. A.G. Hunt, Percolation Theory for Flow in Porous Media (Springer, New York, 2005)

  27. Z. Wu, E. Lopez, S.V. Buldyrev, L.A. Braunstein, S. Havlin, H.E. Stanley, Phys. Rev. E 71, 045101(R) (2005)

    ADS  Google Scholar 

  28. F. Bottiglione, G. Carbone, L. Mangialardi, G. Mantriota, J. Appl. Phys. 106, 104902 (2009)

    Article  ADS  Google Scholar 

  29. S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. J. Persson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lorenz, B., Persson, B.N.J. Leak rate of seals: Effective-medium theory and comparison with experiment. Eur. Phys. J. E 31, 159–167 (2010). https://doi.org/10.1140/epje/i2010-10558-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2010-10558-6

Keywords

Navigation