Skip to main content
Log in

Mechanical properties of thin confined polymer films close to the glass transition in the linear regime of deformation: Theory and simulations

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Over the past twenty years experiments performed on thin polymer films deposited on substrates have shown that the glass transition temperature T g can either decrease or increase depending on the strength of the interactions. Over the same period, experiments have also demonstrated that the dynamics in liquids close to the glass transition temperature is strongly heterogeneous, on the scale of a few nanometers. A model for the dynamics of non-polar polymers, based on percolation of slow subunits, has been proposed and developed over the past ten years. It proposes a unified mechanism regarding these two features. By extending this model, we have developed a 3D model, solved by numerical simulations, in order to describe and calculate the mechanical properties of polymers close to the glass transition in the linear regime of deformation, with a spatial resolution corresponding to the subunit size. We focus on the case of polymers confined between two substrates with non-negligible interactions between the polymer and the substrates, a situation which may be compared to filled elastomers. We calculate the evolution of the elastic modulus as a function of temperature, for different film thicknesses and polymer-substrate interactions. In particular, this allows to calculate the corresponding increase of glass transition temperature, up to 20 K in the considered situations. Moreover, between the bulk T g and T g + 50 K the modulus of the confined layers is found to decrease very slowly in some cases, with moduli more than ten times larger than that of the pure matrix at temperatures up to T g + 50 K. This is consistent with what is observed in reinforced elastomers. This slow decrease of the modulus is accompanied by huge fluctuations of the stress at the scale of a few tens of nanometers that may even be negative as compared to the solicitation, in a way that may be analogous to mechanical heterogeneities observed recently in molecular dynamics simulations. As a consequence, confinement may result not only in an increase of the glass transition temperature, but in a huge broadening of the glass transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.D. Ediger, C.A. Angell, S.R. Nagel, J. Phys. Chem. 100, 13200 (1996).

    Article  Google Scholar 

  2. J.D. Ferry, Viscoelastic Properties of Polymers (John Wiley and Sons, Inc., 1980).

  3. M.D. Ediger, Annu. Rev. Chem. 51, 99 (2000).

    Article  ADS  Google Scholar 

  4. R. Richert, J. Phys.: Condens. Matter 14, R703 (2002).

    Article  ADS  Google Scholar 

  5. K. Schmidt-Rohr, H.W. Spiess, Phys. Rev. Lett. 66, 3020 (1991).

    Article  ADS  Google Scholar 

  6. U. Tracht, M. Wilhelm, A. Heuer, H. Feng, K. Schmidt-Rohr, H.W. Spiess, Phys. Rev. Lett. 81, 2727 (1998).

    Article  ADS  Google Scholar 

  7. S.A. Reinsberg, X.H. Qiu, M. Wilhelm, H.W. Spiess, M.D. Ediger, J. Chem. Phys. 114, 7299 (2001).

    Article  ADS  Google Scholar 

  8. M.T. Cicerone, F.R. Blackburn, M.D. Ediger, Macromolecules 28, 8224 (1995).

    Article  ADS  Google Scholar 

  9. C.-Y. Wang, M.D. Ediger, Macromolecules 30, 4770 (1997).

    Article  ADS  Google Scholar 

  10. M.T. Cicerone, P.A. Wagner, M.D. Ediger, J. Phys. Chem. B 101, 8727 (1997).

    Article  Google Scholar 

  11. F. Fujara, B. Geil, H. Sillescu, G. Fleischer, Z. Phys. B 88, 195 (1992).

    Article  ADS  Google Scholar 

  12. Y. Hwang, T. Inoue, P.A. Wagner, M.D. Ediger, J. Polym. Sci., Part B: Polym. Phys. 38, 68 (2000).

    Article  ADS  Google Scholar 

  13. B. Schiener, R. Böhmer, A. Loidl, R.V. Chamberlin, Science 274, 752 (1996).

    Article  ADS  Google Scholar 

  14. R. Richert, J. Chem. Phys. 113, 8404 (2000).

    Article  ADS  Google Scholar 

  15. G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965).

    Article  ADS  Google Scholar 

  16. J.L. Keddie, R.A.L. Jones, R.A. Cory, Europhys. Lett. 27, 59 (1994).

    Article  ADS  Google Scholar 

  17. D.B. Hall, A. Dhinojwala, J.M. Torkelson, Phys. Rev. Lett. 79, 103 (1997).

    Article  ADS  Google Scholar 

  18. J. Mattsson, J.A. Forrest, J. Borjesson, Phys. Rev. E. 62, 5187 (2000).

    Article  ADS  Google Scholar 

  19. S. Kawana, R.A.L. Jones, Phys. Rev. E. 63, 021501 (2001).

    Article  ADS  Google Scholar 

  20. J.Q. Pham, P.F. Green, J. Chem. Phys. 116, 5801 (2002).

    Article  ADS  Google Scholar 

  21. L. Hartmann, W. Gorbatschow, J. Hauwede, F. Kremer, Eur. Phys. J. E 8, 145 (2002).

    Article  Google Scholar 

  22. C.J. Ellison, J.M. Torkelson, J. Polym. Sci. Part B: Polym. Phys. 40, 2745 (2002).

    Article  ADS  Google Scholar 

  23. C.J. Ellison, J.M. Torkelson, Nat. Mater. 2, 695 (2003).

    Article  ADS  Google Scholar 

  24. K. Fukao, Y. Miyamoto, Phys. Rev. E 61, 1743 (2000).

    Article  ADS  Google Scholar 

  25. J.Q. Pham, P.F. Green, Macromolecules 36, 1665 (2003).

    Article  ADS  Google Scholar 

  26. W.E. Wallace, J.H. van Zanten, W.L. Wu, Phys. Rev. E 52, R3329 (1995).

    Article  ADS  Google Scholar 

  27. J.H. van Zanten, W.E. Wallace, W.L. Wu, Phys. Rev. E 53, R2053 (1996).

    Article  ADS  Google Scholar 

  28. Y. Grohens, M. Brogly, C. Labbe, M.-O. David, J. Schultz, Langmuir 14, 2929 (1998).

    Article  Google Scholar 

  29. P. Carriere, Y. Grohens, J. Spevacek, J. Schultz, Langmuir 16, 5051 (2000).

    Article  Google Scholar 

  30. Y. Grohens, L. Hamon, G. Reiter, A. Soldera, Y. Holl, Eur. Phys. J. E 8, 217 (2002).

    Article  Google Scholar 

  31. D.S. Fryer, P.F. Nealey, J.J. de Pablo, Macromolecules 33, 6439 (2000).

    Article  ADS  Google Scholar 

  32. D.S. Fryer, E.J. Peters, J.E. Kim, J.E. Tomaszewski, J.J. de Pablo, P.F. Nealey, C.C. White, W. Wu, Macromolecules 34, 5627 (2001).

    Article  ADS  Google Scholar 

  33. O.K.C. Tsui, T.P. Russell, C.J. Hawker, Macromolecules 34, 5535 (2001).

    Article  ADS  Google Scholar 

  34. B. Metin, F.D. Blum, Langmuir 26, 5226 (2010).

    Article  Google Scholar 

  35. S. Ge, Y. Pu, W. Zhang, M. Rafailovich, J. Sokolov, C. Buenviaje, R. Buckmaster, R.M. Overney, Phys. Rev. Lett. 85, 2340 (2000).

    Article  ADS  Google Scholar 

  36. K. Tanaka, A. Takahara, T. Kajiyama, Macromolecules 33, 7588 (2000).

    Article  ADS  Google Scholar 

  37. J.A. Hammerschmidt, W.L. Gladfelter, G. Haugstad, Macromolecules 32, 3360 (1999).

    Article  ADS  Google Scholar 

  38. M. Alcoutlabi, G.B. McKenna, J. Phys.: Condens. Matter 17, R461 (2005).

    Article  ADS  Google Scholar 

  39. D. Long, Eur. Phys. J. E 8, 245 (2002).

    Article  Google Scholar 

  40. J. Berriot, F. Lequeux, H. Montès, L. Monnerie, D. Long, P. Sotta, J. Non-Cryst. Solids 307, 719 (2002).

    Article  ADS  Google Scholar 

  41. J. Berriot, H. Montès, F. Lequeux, D. Long, P. Sotta, Macromolecules 35, 9756 (2002).

    Article  ADS  Google Scholar 

  42. J. Berriot, H. Montès, F. Lequeux, D. Long, P. Sotta, Europhys. Lett. 64, 50 (2003).

    Article  ADS  Google Scholar 

  43. S. Merabia, P. Sotta, D.R. Long, Macromolecules 41, 8252 (2008).

    Article  ADS  Google Scholar 

  44. S. Merabia, P. Sotta, D.R. Long, J. Polym. Sci. Part B: Polym. Phys. 48, 1495 (2010).

    Article  ADS  Google Scholar 

  45. P. Rittigstein, J.M. Torkelson, J. Polym. Sci. Part B: Polym. Phys. 44, 2935 (2006).

    Article  ADS  Google Scholar 

  46. D. Ciprari, K. Jacob, R. Tannenbaum, Macromolecules 39, 6565 (2006).

    Article  ADS  Google Scholar 

  47. K. Putz, R. Krishnamoorti, P.F. Green, Polymer 48, 3540 (2007).

    Article  Google Scholar 

  48. J.M. Kropka, K.W. Putz, V. Pryamitsyn, V. Ganesan, P.F. Green, Macromolecules 40, 5424 (2007).

    Article  ADS  Google Scholar 

  49. Y.-Q. Rao, J.M. Pochan, Macromolecules 40, 290 (2007).

    Article  ADS  Google Scholar 

  50. P. Rittigstein, R.D. Priestley, L.J. Broadbelt, J.M. Torkelson, Nat. Mater. 6, 278 (2007).

    Article  ADS  Google Scholar 

  51. M.-J. Wang, Rubber Chem. Technol. 71, 520 (1998).

    Article  Google Scholar 

  52. D. Long, F. Lequeux, Eur. Phys. J. E 4, 371 (2001).

    Article  Google Scholar 

  53. S. Merabia, D. Long, Eur. Phys. J. E 9, 195 (2002).

    Article  Google Scholar 

  54. S. Merabia, P. Sotta, D. Long, Eur. Phys. J. E 15, 189 (2004).

    Article  Google Scholar 

  55. P. Sotta, D. Long, Eur. Phys. J. E 11, 375 (2003).

    Article  Google Scholar 

  56. S. Merabia, D. Long, J. Chem. Phys. 125, 234901 (2006).

    Article  ADS  Google Scholar 

  57. K. Chen, E.J. Saltzman, K.S. Schweizer, J. Phys.: Condens. Matter 21, 503101 (2009).

    Article  Google Scholar 

  58. J. Baschnagel, F. Varnik, J. Phys.: Condens. Matter 17, R851 (2005).

    Article  ADS  Google Scholar 

  59. J.L. Barrat, J. Baschnagel, A. Lyulin, Soft Matter 6, 3430 (2010).

    Article  ADS  Google Scholar 

  60. S. Merabia, D. Long, Macromolecules 41, 3284 (2008).

    Article  ADS  Google Scholar 

  61. R. Yamamoto, A. Onuki, Phys. Rev. Lett. 81, 4915 (1998).

    Article  ADS  Google Scholar 

  62. C. Donati, J.F. Douglas, W. Kob, S.J. Plimpton, P.H. Poole, S.C. Glotzer, Phys. Rev. Lett. 80, 2338 (1998).

    Article  ADS  Google Scholar 

  63. C. Mischler, J. Baschnagel, K. Binder, Adv. Colloid Interface Sci. 94, 197 (2001).

    Article  Google Scholar 

  64. F. Varnik, J. Baschnagel, K. Binder, Eur. Phys. J. E 8, 175 (2002).

    Article  Google Scholar 

  65. P. Scheidler, W. Kob, K. Binder, Europhys. Lett. 59, 701 (2002).

    Article  ADS  Google Scholar 

  66. P. Scheidler, W. Kob, K. Binder, J. Phys. Chem. B 108, 6673 (2004).

    Article  Google Scholar 

  67. S. Peter, H. Meyer, J. Baschnagel, J. Polym. Sci.: Part B: Polym. Phys. 44, 2951 (2006).

    Article  ADS  Google Scholar 

  68. P.G. Debenedetti, F.H. Stillinger, Nature 410, 259 (2001).

    Article  ADS  Google Scholar 

  69. A. Heuer, J. Phys.: Condens. Matter 20, 373101 (1992).

    Article  MathSciNet  Google Scholar 

  70. K.S. Schweizer, E.J. Saltzman, J. Chem. Phys. 119, 1181 (2003).

    Article  ADS  Google Scholar 

  71. K.S. Schweizer, E.J. Saltzman, J. Chem. Phys. 55, 241 (2004).

    Google Scholar 

  72. G. Diezemann, J. Chem. Phys. 123, 204510 (2005).

    Article  ADS  Google Scholar 

  73. L.S. Loo, R.E. Cohen, K.K. Gleason, Science 288, 116119 (2000).

    Article  Google Scholar 

  74. H.-N. Lee, K. Paeng, S.F. Swallen, M.D. Ediger, Science 323, 231 (2009).

    Article  Google Scholar 

  75. R.A. Riggleman, H.-N. Lee, M.D. Ediger, J.J. de Pablo, Soft Matter 6, 287 (2010).

    Article  ADS  Google Scholar 

  76. K. Yoshimoto, T.S. Jain, K. van Workum, P.F. Nealey, J.J. de Pablo, Phys. Rev. Lett. 93, 175501 (2004).

    Article  ADS  Google Scholar 

  77. F. Leonforte, R. Boissière, A. Tanguy, J.P. Wittmer, J.-L. Barrat, Phys. Rev. B 72, 224206 (2005).

    Article  ADS  Google Scholar 

  78. R.A. Riggleman, H.-N. Lee, M.D. Ediger, J.J. de Pablo, Phys. Rev. Lett. 99, 215501 (2007).

    Article  ADS  Google Scholar 

  79. M. Tsamados, A. Tanguy, C. Goldenberg, J.-L. Barrat, Phys. Rev. E 80, 026112 (2009).

    Article  ADS  Google Scholar 

  80. G.J. Papakonstantopoulos, R.A. Riggleman, J.-L. Barrat, J.J. de Pablo, Phys. Rev. E 77, 041502 (2008).

    Article  ADS  Google Scholar 

  81. R.A. Riggleman, K.S. Schweizer, J.J. de Pablo, Macromolecules 41, 4969 (2008).

    Article  ADS  Google Scholar 

  82. A. Widmer-Cooper, P. Harrowell, J. Phys.: Condens. Matter 17, S4025 (2005).

    Article  ADS  Google Scholar 

  83. M. Doi, S.F. Edwards, Theory of Polymer Dynamics (Oxford publishing, Oxford, 1986).

  84. T.G. Lombardo, P.G. Debenedetti, F.H. Stillinger, J. Chem. Phys. 125, 174507 (2006).

    Article  ADS  Google Scholar 

  85. J.E. Mark, Physical Properties of Polymers Handbook (American Institute of Physics, 1996).

  86. R.N. Haward, The Physics of Glassy Polymers (Applied Science Publishers, London, 1973).

  87. G.W. Scherer, Relaxation in Glass and Composites (John Wiley and Sons, New York, 1986).

  88. R.E. Robertson, J. Polym. Sci. Polym. Symp. 63, 173 (1978).

    Article  Google Scholar 

  89. A.J. Kovacs, J.J. Aklonis, J.M. Hutchinson, A.R. Ramos, J. Polym. Sci: Polym. Phys. Ed. 17, 1097 (1979).

    Article  ADS  Google Scholar 

  90. J.D. Ferry, Viscoelastic Properties of Polymers (John Wiley and Sons, Inc., 1980).

  91. J. Fröhlich, W. Niedermeier, H.-D. Luginsland, Composites: Part A 36, 449 (2005).

    Article  Google Scholar 

  92. H. Montes, T. Chaussée, A. Papon, F. Lequeux, L. Guy, Eur. Phys. J. E 31, 263 (2010).

    Article  Google Scholar 

  93. M. Klüppel, The role of glassy-like polymer bridges in rubber reinforcement, in Constitutive Models for Rubber VII, edited by S. Jerrams, N. Murphy (Taylor and Francis, London, UK, 2012) (Proceedings of the 7th European Conference on Constitutive Models for Rubber).

  94. B. Gabrielle, “Determination et études des mécanismes mésoscopique de dèchirure des caoutchoucs naturel renforcés”, PhD thesis, Université de Lyon (2009).

  95. Z. Mane, “Determination et études des mécanismes mésoscopique responsables de l’usure des caoutchoucs naturels renforcés”, PhD thesis, Université de Lyon (2011).

  96. P.A. O’Connell, G.B. McKenna, Science 307, 1760 (2005).

    Article  ADS  Google Scholar 

  97. R.B. Bogoslovov, C.M. Roland, A.R. Ellis, A.M. Randall, C.G. Robertson, Macromolecules 41, 1289 (2008).

    Article  ADS  Google Scholar 

  98. C.G. Robertson, C.J. Lin, M. Rackaitis, C.M. Roland, Macromolecules 41, 2727 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Long.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dequidt, A., Long, D.R., Sotta, P. et al. Mechanical properties of thin confined polymer films close to the glass transition in the linear regime of deformation: Theory and simulations. Eur. Phys. J. E 35, 61 (2012). https://doi.org/10.1140/epje/i2012-12061-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12061-6

Keywords

Navigation