Skip to main content
Log in

Meshless local radial point interpolation (MLRPI) on the telegraph equation with purely integral conditions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, the meshless local radial point interpolation (MLRPI) method is applied to the one-dimensional telegraph equation with purely integral conditions. In MLRPI, it does not require any background integration cells but it requires all integrations be carried out locally over small quadrature domains of regular shapes, such as lines in one dimension, circles or squares in two dimensions and spheres or cubes in three dimensions. A technique is proposed to construct shape functions using point interpolation method augmented to the radial basis functions. The time derivatives are approximated by the finite difference method. Some numerical experiments for the mentioned problem are carried out as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.A. Gonzalez-Velasco, Fourier Analysis and Boundary Value Problems (Academic Press, New York, 1995).

  2. P.M. Jordan, A. Puri, J. Appl. Phys. 85, 1273 (1999).

    Article  ADS  Google Scholar 

  3. W.E. Boyce, R.C. Di Prima, Differential Equations Elementary and Boundary Value Problems (Wiley, New York, 1977).

  4. J. Banasiak, J.R. Mika, J. Appl. Math. Stoch. Anal. 11, 9 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  5. A.N. Tikhonov, A.A. Samarskii, Equations of Mathematical Physics (Dover, New York, 1990).

  6. P. Almenar, L. Jódar, J.A. Martin, Math. Comput. Modelling 25, 31 (1997).

    Article  MATH  Google Scholar 

  7. R. Aloy, M.C. Casabn, L.A. Caudillo-Mata, L. Jdar, Comput. Math. Appl. 54, 448 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  8. M. Ciment, S.H. Leventhal, Math. Comp. 29, 985 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Ciment, S.H. Leventhal, Math. Comp. 32, 143 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  10. G. Dahlquist, BIT Numer. Math. 18, 133 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  11. R.K. Mohanty, M.K. Jain, Numer. Methods PDEs 17, 684 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  12. R.K. Mohanty, M.K. Jain, U. Arora, Int. J. Comput. Math. 79, 133 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Bouziani, Problèmes mixtes avec conditions intégrales pour quelques équations aux dérivées partielles, PhD thesis, Constantine University (1996).

  14. A. Bouziani, J. Appl. Math. Stochastic Anal. 15, 136 (2002).

    Article  Google Scholar 

  15. A. Bouziani, Int. J. Math. Math. Sci. 26, 1279 (2004).

    Article  MathSciNet  Google Scholar 

  16. A. Bouziani, Int. J. Math. Math. Sci. 30, 327 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Bouziani, Int. J. Math. Math. Sci. 31, 435 (2002).

    Article  Google Scholar 

  18. D.G. Gordeziani, G.A. Avalishvili, Mat. Model. 12, 94 (2000) (Russian).

    MATH  MathSciNet  Google Scholar 

  19. S. Mesloub, A. Bouziani, Int. J. Math. Math. Sci. 22, 511 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  20. L.S. Pul’kina, Electron. J. Differ. Equ. 45, 1 (1999).

    MathSciNet  Google Scholar 

  21. L.S. Pul’kina, Differ. Equ. 36, 316 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Merad, A. Bouziani, TWMS J. Appl. Eng. Math. 3, 245 (2013).

    MathSciNet  Google Scholar 

  23. G. Liu, Y. Gu, An Introduction to Meshfree Methods and Their Programing (Springer, 2005).

  24. T. Belytschko, Y.Y. Lu, L. Gu, Int. J. Numer. Methods Eng. 37, 229 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  25. T. Belytschko, Y.Y. Lu, L. Gu, Int. J. Solid Struct. 32, 2547 (1995).

    Article  MATH  Google Scholar 

  26. E. Kansa, Comput. Math. Appl. 19, 127 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  27. M. Dehghan, A. Shokri, Math. Comput. Simulat. 79, 700 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  28. S. Atluri, T. Zhu, Comput. Mech. 22, 117 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  29. M. Dehghan, D. Mirzaei, Appl. Numer. Math. 59, 1043 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  30. Y. Gu, G. Liu, Comput. Mech. 27, 188 (2001).

    Article  MATH  Google Scholar 

  31. A. Shirzadi, L. Ling, S. Abbasbandy, Eng. Anal. Bound. Elements 36, 1522 (2012).

    Article  MathSciNet  Google Scholar 

  32. B. Nayroles, G. Touzot, P. Villon, Comput. Mech. 10, 307 (1992).

    Article  MATH  Google Scholar 

  33. A.G. Bratsos, Int. J. Numer. Methods Eng. 75, 787 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  34. P.W. Clear, Appl. Math. Model. 22, 981 (1998).

    Article  Google Scholar 

  35. W.K. Liu, S. Jun, Y.F. Zhang, Int. J. Numer. Methods Eng. 20, 1081 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  36. Y.X. Mukherjee, S. Mukherjee, Int. J. Numer. Methods Eng. 40, 797 (1997).

    Article  MATH  Google Scholar 

  37. J.M. Melenk, I. Babuska, Comput. Methods. Appl. Mech. Eng. 139, 289 (1996).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. S. De, K.J. Bathe, Comput. Mech. 25, 329 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  39. Y.T. Gu, G.R. Liu, Struct. Eng. Mech. 15, 535 (2003).

    Article  Google Scholar 

  40. G.R. Liu, L. Yan, J.G. Wang, Y.T. Gu, Struct. Eng. Mech. 14, 713 (2002).

    Article  Google Scholar 

  41. G.R. Liu, Y.T. Gu, J. Sound Vib. 246, 29 (2001).

    Article  ADS  Google Scholar 

  42. M. Dehghan, A. Ghesmati, Comput. Phys. Commun. 181, 772 (2010).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. E. Shivanian, Eng. Anal. Bound. Elem. 37, 1693 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  44. E. Shivanian, Ocean Eng. 89, 173 (2014).

    Article  Google Scholar 

  45. T. Kaufmann, C. Fumeaux, R. Vahldieck, IEEE MTT-S Int. 61, 15 (2008).

    Google Scholar 

  46. Y. Yu, Z. Chen, IEEE Trans. Microwave Theory Tech. 57, 2015 (2009).

    Article  ADS  Google Scholar 

  47. T. Kaufmann, Y. Yu, C. Engstrm, Z. Chen, C. Fumeaux, Int. J. Numer. Model. 25, 1099 (2012).

    Article  Google Scholar 

  48. C. Franke, R. Schaback, Appl. Math. Comput. 93, 73 (1997).

    Article  MathSciNet  Google Scholar 

  49. M. Sharan, E.J. Kansa, S. Gupta, Appl. Math. Comput. 84, 275 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  50. M.J.D. Powell, Theory of radial basis function approximation in 1990, in Advances in Numerical Analysis, edited by F.W. Light (1992) pp. 303--322.

  51. H. Wendland, J. Approx. Theor. 93, 258 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  52. D. Hu, S. Long, K. Liu, G. Li, Eng. Anal. Bound. Elements 30, 399 (2006).

    Article  MATH  Google Scholar 

  53. K. Liu, S. Long, G. Li, Eng. Anal. Bound. Elements 30, 72 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elyas Shivanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivanian, E., Reza Khodabandehlo, H. Meshless local radial point interpolation (MLRPI) on the telegraph equation with purely integral conditions. Eur. Phys. J. Plus 129, 241 (2014). https://doi.org/10.1140/epjp/i2014-14241-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14241-9

Keywords

Navigation