Skip to main content
Log in

Exact solutions for free convection flow of nanofluids with ramped wall temperature

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This article aims to study the unsteady convection flow of nanofluids induced by free convection and the oscillating plate condition. The fluid is confined to the region over an infinite vertical flat plate with ramped wall temperature. Five different types of water-based nanofluids containing copper (Cu), silver (Ag), copper oxide (CuO), alumina ( Al2O3 and titanium oxide (TiO2 are chosen for this analysis. The Laplace transform technique is applied to obtain exact solutions of velocity and temperature for both cases of ramp and isothermal plate conditions. Ramp and isothermal solutions are compared graphically and it is found that the ramp velocity and the temperature are smaller in magnitude than isothermal velocity and temperature. Corresponding expressions for skin-friction and Nusselt number are also evaluated. The results are plotted for various physical parameters contained in the governing equations and discussed in details. Comparison with earlier results provides an excellent agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Rajesh, Int. J. Appl. Math. Mech. 6, 1 (2010).

    Google Scholar 

  2. M. Narahari, Appl. Mech. Mater. 110, 2228 (2012).

    Google Scholar 

  3. A.V. Kuznetsov, D.A. Nield, Int. J. Therm. Sci. 49, 243 (2010).

    Article  Google Scholar 

  4. M. Turkyilmazoglu, I. Pop, Int. J. Heat Mass Transfer 55, 7635 (2012).

    Article  Google Scholar 

  5. S. Sengupta, Int. J. Math. Arch. 2, 1266 (2011).

    Google Scholar 

  6. S. Choi, Dev. Appl. Non-Newtonian Flows 66, 99 (1995).

    Google Scholar 

  7. A.J. Chamkha, A.M. Rashad, Int. J. Numer. Methods Heat Fluid Flow 22, 1073 (2012).

    Article  Google Scholar 

  8. J.A. Eastman, S.U.S. Cho, S. Li, L.J. Thompson, S. Lee, in Fall meeting of the Materials Research Society (Boston, USA, 1997).

  9. J.A. Eastman, S.U.S. Cho, S. Li, L.J.J. Metastable, Nano-Crystalline Mater. 2, 629 (1998).

    Google Scholar 

  10. S.K. Das, N. Putra, W. Roetzel, Int. J. Heat Mass Transfer 46, 851 (2003).

    Article  Google Scholar 

  11. S.K. Das, N. Putra, W. Roetzel, Trans. ASME J. Heat Transfer 125, 567 (2003).

    Article  Google Scholar 

  12. J. Buongiorno, ASME J. Heat Transfer 128, 240 (2006).

    Article  Google Scholar 

  13. J. Buongiorno, D.C. Venerus, N. Prabhat, J. Appl. Phys. 106, 094312 (2009).

    Article  ADS  Google Scholar 

  14. S. Ahmed, I. Pop, Int. Commun. Heat Mass Transfer 37, 987 (2010).

    Article  Google Scholar 

  15. M.A.A. Hamad, I. Pop, A.I. Md. Ismail, Nonlinear Anal.: Real World Appl. 12, 1338 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  16. M.A.A. Hamad, Int. Commun. Heat Mass Transfer 38, 487 (2011).

    Article  Google Scholar 

  17. M. Qasim, I. Khan, S. Shafie, Math. Prob. Eng. 2013, 254973 (2013).

    Article  MathSciNet  Google Scholar 

  18. N. Bachok, A. Ishak, I. Pop, Int. J. Therm. Sci. 49, 1663 (2010).

    Article  Google Scholar 

  19. R. Kandasamy, P. Loganathan, P.P. Arasu, Nucl. Eng. Des. 241, 2053 (2011).

    Article  Google Scholar 

  20. A. Mahdy, Nucl. Eng. Des. 249, 248 (2012).

    Article  Google Scholar 

  21. M.I. Anwar, I. Khan, S. Shafie, M.Z. Salleh, Int. J. Phys. Sci. 7, 4081 (2012).

    Article  Google Scholar 

  22. M.I. Anwar, I. Khan, M.Z. Salleh, A. Hasnain, S. Shafie, Wulfenia J. 19, 367 (2012).

    Google Scholar 

  23. M.H. Yasi, N.M. Arifi, R. Nazar, F. Ismail, I. Pop, Adv. Sci. Lett. 13, 833 (2012).

    Article  Google Scholar 

  24. W. Ibrahim, O.D. Makinde, Comp. Fluids 86, 433 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  25. W.A. Khan, A. Aziz, Int. J. Therm. Sci. 50, 2154 (2011).

    Article  Google Scholar 

  26. M.J. Uddin, O.A. Bég, A.I.M. Ismail, Math. Prob. Eng. 2014, 179172 (2014).

    Google Scholar 

  27. M.J. Uddin, W.A. Khan, N.S. Amin, PLoS ONE 9, e99384 (2014).

    Article  Google Scholar 

  28. P. Loganathan, P.N. Chand, P. Ganesan, Radiation effects on an unsteady natural convective flow of a nanofluid past an infinite vertical plate, Vol. 8 (World Scientific Publishing Company, 2013) pp. 1350001--1350010.

  29. M. Turkyilmazoglu, J. Heat Transfer 136, 031704 (2014).

    Article  Google Scholar 

  30. A.A. Hayday, D.A. Bowlus, R.A. Mc Graw, ASME J. Heat Transfer 89, 244 (1967).

    Article  Google Scholar 

  31. M. Kelleher, ASME J. Heat Transfer 93, 349 (1971).

    Article  Google Scholar 

  32. T.T. Kao, Lett. Heat Mass Transfer 2, 419 (1975).

    Article  Google Scholar 

  33. J.A. Schetz, R. Eichhorn, Trans. ASME 61, 334 (1962).

    Article  Google Scholar 

  34. P. Chandran, N.C. Sacheti, A.K. Singh, Heat Mass Transfer 41, 459 (2005).

    Article  ADS  Google Scholar 

  35. G.S. Seth, MdS. Ansari, R. Nandkeolyar, Heat Mass Transfer 47, 551 (2011).

    Article  ADS  Google Scholar 

  36. M. Narahari, OA Beg, AIP Conf. Ser. 1225, 743 (2010).

    Article  ADS  Google Scholar 

  37. R. Nandkeolyar, M. Das, H. Pattnayak, J. Orissa Math. Soc. 32, 15 (2013).

    Google Scholar 

  38. Samiulhaq, I. Khan I, F. Ali, S. Shafie, J. Phys. Soc. Jpn. 81, 4401 (2012).

    Google Scholar 

  39. Samiulhaq, S. Ahmed, D. Vieru, I. Khan, S. Shafie, Plos One 5, e88766 (2014).

    Article  ADS  Google Scholar 

  40. Z. Ismail, A. Hussanan, I. Khan, S. Shafie, Int. J. Appl. Math. Stat. 45, 77 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma Khalid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, A., Khan, I. & Shafie, S. Exact solutions for free convection flow of nanofluids with ramped wall temperature. Eur. Phys. J. Plus 130, 57 (2015). https://doi.org/10.1140/epjp/i2015-15057-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15057-9

Keywords

Navigation