Skip to main content
Log in

Radiative flow of a tangent hyperbolic fluid with convective conditions and chemical reaction

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The objective of present paper is to examine the thermal radiation effects in the two-dimensional mixed convection flow of a tangent hyperbolic fluid near a stagnation point. The analysis is performed in the presence of heat generation/absorption and chemical reaction. Convective boundary conditions for heat and mass transfer are employed. The resulting partial differential equations are reduced into nonlinear ordinary differential equations using appropriate transformations. Series solutions of momentum, energy and concentration equations are computed. The characteristics of various physical parameters on the distributions of velocity, temperature and concentration are analyzed graphically. Numerical values of skin friction coefficient, local Nusselt and Sherwood numbers are computed and examined. It is observed that larger values of thermal and concentration Biot numbers enhance the temperature and concentration distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Freidoonimehr et al., Math. Prob. Eng. 2014, 692728 (2014)

    Article  MathSciNet  Google Scholar 

  2. T. Hayat et al., Int. J. Nonlinear Sci. Numer. Simulat. 15, 365 (2014)

    MathSciNet  Google Scholar 

  3. M. Sheikholeslami et al., Eng. Comput. 30, 357 (2013)

    Article  Google Scholar 

  4. T. Hayat et al., Open Phys. 13, 188 (2015)

    Article  MathSciNet  Google Scholar 

  5. S. Mukhopadhyay, Afr. Math. 25, 1 (2014)

    Article  Google Scholar 

  6. A. Aziz, Commun. Nonlinear Sci. Numer. Simulat. 14, 1064 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. T. Hayat et al., J. Mol. Liq. 223, 969 (2016)

    Article  Google Scholar 

  8. C. Sulochana et al., J. Nigerian Math. Soc. 35, 128 (2016)

    Article  MathSciNet  Google Scholar 

  9. S.A. Shehzad et al., J. Magn. & Magn. Mater. 397, 108 (2016)

    Article  ADS  Google Scholar 

  10. T. Hayat et al., J. Mol. Liq. 215, 704 (2016)

    Article  Google Scholar 

  11. E.L. Cussler, Diffusion: Mass Transfer in Fluid Systems (Cambridge University Press, London)

  12. T. Hayat et al., Int. J. Heat Mass Transfer 54, 3777 (2011)

    Article  Google Scholar 

  13. S.A. Shehzad et al., Braz. J. Chem. Eng. 30, 187 (2013)

    Article  Google Scholar 

  14. M. Awais et al., Int. J. Numer. Methods Heat Fluid Flow 24, 483 (2014)

    Article  MathSciNet  Google Scholar 

  15. R. Kandasamy et al., Commun. Nonlinear Sci. Numer. Simulat. 15, 2109 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  16. A.M. Rashad et al., Int. J. Numer. Methods Heat Fluid Flow 24, 1124 (2014)

    Article  MathSciNet  Google Scholar 

  17. T. Hayat, Chin. J. Chem. Eng. (2016) DOI:10.1016/j.cjche.2016.06.008

  18. S. Mukhopadhyay, K. Bhattacharyya, J. Egypt. Math. Soc. 20, 229 (2012)

    Article  MathSciNet  Google Scholar 

  19. S.A. Shehzad et al., J. Appl. Fluid Mech. 8, 465 (2015)

    ADS  Google Scholar 

  20. S.M. Ibrahim, Chem. Process. Eng. Res. 19, 25 (2014)

    Google Scholar 

  21. M. Turkyilmazoglu, I. Pop, Int. J. Heat Mass Transfer 59, 167 (2013)

    Article  Google Scholar 

  22. S. Mukhopadhyay, Int. J. Heat Mass Transfer 52, 3261 (2009)

    Article  Google Scholar 

  23. C.-H. Chen, Int. J. Non-Linear Mech. 44, 596 (2009)

    Article  ADS  Google Scholar 

  24. T. Hayat et al., J. Mech. 29, 403 (2013)

    Article  Google Scholar 

  25. S. Mukhopadhyay, Meccanica 48, 1717 (2013)

    Article  MathSciNet  Google Scholar 

  26. Y.Y. Lok et al., Int. J. Thermal Sci. 59, 186 (2012)

    Article  Google Scholar 

  27. K. Bhattacharyya, K. Vajravelu, Commun. Nonlinear Sci. Numer. Simulat. 17, 2728 (2012)

    Article  ADS  Google Scholar 

  28. T. Hayat et al., Int. J. Nonlinear Sci. Numer. Simulat. 15, 77 (2014)

    MathSciNet  Google Scholar 

  29. M.M. Rashidi, E. Erfani, Comput. Fluids 40, 172 (2011)

    Article  Google Scholar 

  30. S. Liao, Homotopy Analysis Method in Nonlinear Differential Equations (Springer & Higher Education Press, Heidelberg, 2012)

  31. M. Turkyilmazoglu, I. Pop, Int. J. Heat Mass Transfer 57, 82 (2013)

    Article  Google Scholar 

  32. T. Hayat et al., Int. J. Heat Mass Transfer 103, 99 (2016)

    Article  Google Scholar 

  33. M. Waqas et al., Int. J. Heat Mass Transfer 102, 766 (2016)

    Article  Google Scholar 

  34. L. Zheng et al., J. Franklin Inst. 350, 990 (2013)

    Article  MathSciNet  Google Scholar 

  35. T. Hayat et al., Alex. Eng. J. 54, 205 (2015)

    Article  Google Scholar 

  36. T. Hayat et al., J. Mol. Liq. 224, 811 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajid Qayyum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Qayyum, S., Ahmad, B. et al. Radiative flow of a tangent hyperbolic fluid with convective conditions and chemical reaction. Eur. Phys. J. Plus 131, 422 (2016). https://doi.org/10.1140/epjp/i2016-16422-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16422-x

Navigation