Skip to main content
Log in

Analysis of projectile motion: A comparative study using fractional operators with power law, exponential decay and Mittag-Leffler kernel

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, the two-dimensional projectile motion was studied; for this study two cases were considered, for the first one, we considered that there is no air resistance and, for the second case, we considered a resisting medium k . The study was carried out by using fractional calculus. The solution to this study was obtained by using fractional operators with power law, exponential decay and Mittag-Leffler kernel in the range of \( \gamma \in (0,1]\) . These operators were considered in the Liouville-Caputo sense to use physical initial conditions with a known physical interpretation. The range and the maximum height of the projectile were obtained using these derivatives. With the aim of exploring the validity of the obtained results, we compared our results with experimental data given in the literature. A multi-objective particle swarm optimization approach was used for generating Pareto-optimal solutions for the parameters k and \( \gamma\) for different fixed values of velocity v0 and angle \( \theta\) . The results showed some relevant qualitative differences between the use of power law, exponential decay and Mittag-Leffler law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, New York, 1974)

  2. I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Academic Press, 1998)

  3. S. Kumar, A. Kumar, D. Baleanu, Nonlinear Dyn. 85, 699 (2016)

    Article  Google Scholar 

  4. W. Chen, Y. Liang, X. Hei, Fractional Calc. Appl. Anal. 19, 1250 (2016)

    MathSciNet  Google Scholar 

  5. G.A. Anastassiou, I.K. Argyros, S. Kumar, Fundam. Inform. 151, 241 (2017)

    Article  Google Scholar 

  6. A. Kumar, S. Kumar, S.P. Yan, Fundam. Inform. 151, 213 (2017)

    Article  Google Scholar 

  7. T.A. Nadzharyan, V.V. Sorokin, G.V. Stepanov, A.N. Bogolyubov, E.Y. Kramarenko, Polymer 92, 179 (2016)

    Article  Google Scholar 

  8. P. Agarwal, J. Choi, R.B. Paris, J. Nonlinear Sci. Appl. 8, 451 (2015)

    Article  MathSciNet  Google Scholar 

  9. P. Agarwal, J.J. Nieto, Open Math. 13, 537 (2015)

    Article  MathSciNet  Google Scholar 

  10. I.O. Kiymaz, A. Cetinkaya, P. Agarwal, J. Nonlinear Sci. Appl. 9, 3611 (2016)

    Article  MathSciNet  Google Scholar 

  11. W. Chen, G. Pang, J. Comput. Phys. 309, 350 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  12. Z.B. Vosika, G.M. Lazovic, G.N. Misevic, J.B. Simic-Krstic, PloS ONE 8, e59483 (2013)

    Article  ADS  Google Scholar 

  13. A. Atangana, A. Secer, Abstr. Appl. Anal. 2013, 279681 (2013)

    Google Scholar 

  14. M. Caputo, Boll. Geofis. Teor. Appl. 54, 217 (2013)

    Google Scholar 

  15. B. Duan, Z. Zheng, W. Cao, J. Comput. Phys. 319, 108 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. K. Ito, B. Jin, T. Takeuchi, Appl. Math. Lett. 47, 43 (2015)

    Article  MathSciNet  Google Scholar 

  17. A. Coronel-Escamilla, J.F. Gómez-Aguilar, D. Baleanu, T. Córdova-Fraga, R.F. Escobar-Jiménez, V.H. Olivares-Peregrino, M.M. Al-Qurashi, Entropy 19, 55 (2017)

    Article  ADS  Google Scholar 

  18. M. Caputo, M. Fabricio, Progr. Fract. Differ. Appl. 1, 73 (2015)

    Google Scholar 

  19. J. Lozada, J.J. Nieto, Progr. Fract. Differ. Appl. 1, 87 (2015)

    Google Scholar 

  20. A. Atangana, B.S.T. Alkahtani, Entropy 17, 4439 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Atangana, Appl. Math. Comput. 273, 948 (2016)

    MathSciNet  Google Scholar 

  22. A. Atangana, B.S.T. Alkahtani, Arab. J. Geosci. 9, 8 (2016)

    Article  Google Scholar 

  23. J.F. Gómez-Aguilar, H. Yépez-Martínez, C. Calderón-Ramón, I. Cruz-Orduña, R.F. Escobar-Jiménez, V.H. Olivares-Peregrino, Entropy 17, 6289 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Atangana, J.J. Nieto, Adv. Mech. Eng. 7, 1687814015613758 (2015)

    Google Scholar 

  25. M. Caputo, M. Fabrizio, Progr. Fract. Differ. Appl. 2, 1 (2016)

    Article  Google Scholar 

  26. A. Atangana, D. Baleanu, Model. Therm. Sci. 20, 763 (2016)

    Article  Google Scholar 

  27. B.S.T. Alkahtani, Chaos, Solitons Fractals 89, 547 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  28. J.F. Gómez-Aguilar, R.F. Escobar-Jiménez, M.G. López-López, V.M. Alvarado-Martínez, J. Electromagn. Waves Appl. 30, 1937 (2016)

    Article  Google Scholar 

  29. A. Atangana, I. Koca, Chaos, Solitons Fractals 89, 447 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  30. A. Ebaid, Appl. Math. Modell. 35, 1231 (2011)

    Article  Google Scholar 

  31. B. Ahmad, H. Batarfi, J.J. Nieto, Ó. Otero-Zarraquiños, W. Shammakh, Adv. Differ. Equ. 2015, 63 (2015)

    Article  Google Scholar 

  32. J.J. Rosales, M. Guía, F. Gómez, F. Aguilar, J. Martínez, Cent. Eur. J. Phys. 12, 517 (2014)

    Google Scholar 

  33. M.J. Reddy, D. Nagesh Kumar, Hydrol. Process. 21, 2897 (2007)

    Article  ADS  Google Scholar 

  34. J.F. Gómez-Aguilar, J.J. Rosales-García, J.J. Bernal-Alvarado, T. Córdova-Fraga, R. Guzmán-Cabrera, Rev. Mex. Fís. 58, 348 (2012)

    Google Scholar 

  35. C. Kittel, W. Knight, M. Ruderman, K. Helmholz, B. Moyer, Mechanics (Berkeley Physics Course), Vol. 1 (McGraw Hill, 1973)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Gómez-Aguilar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Aguilar, J.F., Escobar-Jiménez, R.F., López-López, M.G. et al. Analysis of projectile motion: A comparative study using fractional operators with power law, exponential decay and Mittag-Leffler kernel. Eur. Phys. J. Plus 133, 103 (2018). https://doi.org/10.1140/epjp/i2018-11924-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-11924-1

Navigation