Skip to main content
Log in

Traveling wave and exact solutions for the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The nonlinear Schrödinger equation (NLSE) with the aid of three order dispersion terms is investigated to find the exact solutions via the extended \( (\frac{G'}{G^{2}})\)-expansion method and the first integral method. Many exact traveling wave solutions, such as trigonometric, hyperbolic, rational, soliton and complex function solutions, are characterized with some free parameters of the problem studied. It is corroborated that the proposed techniques are manageable, straightforward and powerful tools to find the exact solutions of nonlinear partial differential equations (PDEs). Some figures are plotted to describe the propagation of traveling wave solutions expressed by the hyperbolic functions, trigonometric functions and rational functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.E. Zaspel, Phys. Rev. Lett. 82, 723 (1999)

    Article  ADS  Google Scholar 

  2. Yucui Guo, Introduction to Nonlinear Partial Differential Equations (Tsinghua University Press, Beijing, 2008)

  3. N.Y.V. Aseeva, E.M. Gromov, I.V. Onosova, V.V. Tyutin, JETP Lett. 103, 653 (2016)

    Article  ADS  Google Scholar 

  4. H.C. Samet, M. Benarous, M. Asad-uz-zaman, U. Al Khawaja, Adv. Math. Phys. 2014, 323591 (2014)

    Article  Google Scholar 

  5. J. Lenells, J. Nonlinear Sci. 20, 709 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  6. C.Q. Dai, Y. Wang, J. Liu, Nonlinear Dyn. 84, 1157 (2016)

    Article  Google Scholar 

  7. A. Debussche, Y. Tsutsumi, J. Math. Pures Appl. 96, 363 (2011)

    Article  MathSciNet  Google Scholar 

  8. H. Bulut, Y. Pandir, S. Tuluce Demiray, Waves Random Complex Media 24, 439 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Kaplan, Ö. Ünsal, A. Bekir, Math. Methods Appl. Sci. 39, 2093 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. V.M. Fitio, I.Y. Yaremchuk, V.V. Romakh, Y.V. Bobitski, Appl. Comput. Electromagn. Soc. J. 30, 534 (2015)

    Google Scholar 

  11. M. Wang, X. Li, J. Zhang, Phys. Lett. A 372, 417 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  12. X.H. Liu, W.G. Zhang, Z.M. Li, Adv. Appl. Math. Mech. 4, 122 (2012)

    Article  MathSciNet  Google Scholar 

  13. S.D. Zhu, Math. Comput. Appl. 15, 924 (2010)

    MathSciNet  Google Scholar 

  14. Eerdun Buhe, Temuer. Chaolu, J. Inner Mongolia Normal Univ. (Nat. Sci. Ed.) 41, 120 (2012)

    Google Scholar 

  15. E.M.E. Zayed, K.A. Gepreel, WSEAS Trans. Math. 10, 270 (2011)

    Google Scholar 

  16. E.M.E. Zayed, M.A.M. Abdelaziz, Math. Probl. Eng. 2012, 725061 (2012)

    Article  Google Scholar 

  17. Z. Feng, Phys. Lett. A 293, 57 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  18. G. Akram, N. Mahak, Opt. Quantum Electron. 50, 145 (2018)

    Article  Google Scholar 

  19. N. Taghizadeh, M. Mirzazadeh, F. Farahrooz, J. Math. Anal. Appl. 374, 549 (2011)

    Article  MathSciNet  Google Scholar 

  20. M. Ekici, M. Mirzazadeh, M. Eslami, Q. Zhou, S.P. Moshokoa, A. Biswas, M. Belic, Optik 127, 10659 (2016)

    Article  ADS  Google Scholar 

  21. A. Biswas, M. Mirzazadeh, M. Eslami, D. Milovic, M. Belic, Frequenz 68, 525 (2014)

    Article  ADS  Google Scholar 

  22. M. Eslami, M. Mirzazadeh, Eur. Phys. J. Plus 128, 140 (2013)

    Article  Google Scholar 

  23. M. Mirzazadeh, Nonlinear Dyn. 85, 2569 (2016)

    Article  MathSciNet  Google Scholar 

  24. M. Eslami, M. Mirzazadeh, Ocean Eng. 83, 133 (2014)

    Article  Google Scholar 

  25. M.T. Darvishi, S. Arbabi, M. Najafi, A.M. Wazwaz, Optik 127, 6312 (2016)

    Article  ADS  Google Scholar 

  26. F. Mehrdoust, M. Mirzazadeh, UPB Sci. Bull., Series A 76, 85 (2014)

    Google Scholar 

  27. G. Akram, N. Mahak, Optik 164, 210 (2018)

    Article  ADS  Google Scholar 

  28. T.R. Ding, C.Z. Li, Ordinary Differential Equations (Peking University Press, Peking, 1996)

  29. N. Bourbaki, Commutative Algebra (Addison-Wesley, Paris, 1972)

  30. A. Biswas, S. Konar, Introduction to Non-Kerr Law Optical Solitons (CRC Press, 2006)

  31. K. Zhouzheng, J. Part. Differ. Equ. 28, 158 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghazala Akram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, G., Mahak, N. Traveling wave and exact solutions for the perturbed nonlinear Schrödinger equation with Kerr law nonlinearity. Eur. Phys. J. Plus 133, 212 (2018). https://doi.org/10.1140/epjp/i2018-12061-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12061-7

Navigation