Skip to main content
Log in

Dynamic behavior of an electromagnetic nanobeam using the Haar wavelet method and the higher-order Haar wavelet method

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The primary objective of this article is to study the vibration characteristics of an electromagnetic nanobeam under the mutual framework of Euler-Bernoulli beam theory and Eringen's nonlocal theory. The nanobeam is assumed to be placed in an electromagnetic field, and the electromagnetic force experienced by the nanobeam is modeled in the present investigation by using Hamilton's principle. The impact of the small-scale parameter, as well as of the Hartmann parameter, is analyzed on the frequency parameter for Hinged-Hinged (H-H), Clamped-Hinged (C-H), Clamped-Clamped (C-C), and Clamped-Free (C-F) edges. Mode shapes are also plotted to exhibit the sensitivity of the Hartmann parameter. Numerical solutions of this model are explored by using two relatively new methods viz. the Haar wavelet method (HWM) and the higher-order Haar wavelet method (HOHWM). Convergence of the present model is analyzed by both the methods and the rate of convergence of both HWM and HOHWM is computed by Richardson's formula. A comparative study is carried out by taking the Hinged-Hinged (H-H) boundary condition as a test case to demonstrate the supremacy of HOHWM over HWM. In order to verify the exactness of the model, the results obtained by the present investigation are compared with other previously published literature in special cases showing admirable agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Toupin, Arch. Ration. Mech. Anal. 11, 385 (1962)

    Article  Google Scholar 

  2. A.C. Eringen, J. Appl. Math. Phys. 18, 12 (1967)

    Google Scholar 

  3. A.C. Eringen, Int. J. Eng. Sci. 10, 1 (1972)

    Article  MathSciNet  Google Scholar 

  4. M.E. Gurtin, J. Weissmuller, F. Larche, Philos. Mag. 78, 1093 (1998)

    Article  ADS  Google Scholar 

  5. E.C. Aifantis, Int. J. Fract. 95, 299 (1999)

    Article  Google Scholar 

  6. J.N. Reddy, Int. J. Eng. Sci. 45, 288 (2007)

    Article  Google Scholar 

  7. M. Aydogdu, Physica E 41, 1651 (2009)

    Article  ADS  Google Scholar 

  8. M.A. Eltaher, A.E. Alshorbagy, F.F. Mahmoud, Appl. Math. Model. 37, 4787 (2013)

    Article  MathSciNet  Google Scholar 

  9. S. Chakraverty, S.K. Jena, Curved Layer. Struct. 5, 260 (2018)

    Article  Google Scholar 

  10. S.K. Jena, S. Chakraverty, Int. J. Comput. Mater. Sci. Eng. 7, 1850020 (2018)

    Google Scholar 

  11. S.K. Jena, S. Chakraverty, Front. Built Environ. 4, 63 (2018)

    Article  Google Scholar 

  12. S.K. Jena, S. Chakraverty, Curved Layer. Struct. 5, 201 (2018)

    Article  Google Scholar 

  13. S.K. Jena, S. Chakraverty, Curved Layer. Struct. 6, 68 (2019)

    Article  Google Scholar 

  14. S.K. Jena, S. Chakraverty, R.M. Jena, F. Tornabene, Mater. Res. Express 6, 055016 (2019)

    Article  ADS  Google Scholar 

  15. S.K. Jena, S. Chakraverty, F. Tornabene, Mater. Res. Express 6, 085051 (2019)

    Article  ADS  Google Scholar 

  16. S.K. Jena, S. Chakraverty, F. Tornabene, Mater. Res. Express 6, 0850f2 (2019)

    Article  Google Scholar 

  17. R.M. Jena, S. Chakraverty, S.K. Jena, J. Appl. Comput. Mech. 5, 355 (2019)

    Google Scholar 

  18. C. Cattani, Comput. Math. Appl. 50, 1191 (2005)

    Article  MathSciNet  Google Scholar 

  19. L.M. Castro, A.J. Ferreira, S. Bertoluzza, R.C. Batra, J.N. Reddy, Compos. Struct. 92, 1786 (2010)

    Article  Google Scholar 

  20. C.F. Chen, C.H. Hsiao, IEE Proc. Control Theory Appl. 144, 87 (1997)

    Article  Google Scholar 

  21. C.H. Hsiao, Math. Comput. Simul. 44, 457 (1997)

    Article  Google Scholar 

  22. U. Lepik, Proc. Estonian Acad. Sci. Phys. Math. 50, 155 (2001)

    Google Scholar 

  23. Ü. Lepik, Proc. Estonian Acad. Sci. Eng. 9, 3 (2003)

    Google Scholar 

  24. Ü. Lepik, Int. J. Math. Comput. 1, 84 (2008)

    MathSciNet  Google Scholar 

  25. Ü. Lepik, Math. Modell. Anal. 14, 467 (2009)

    Article  Google Scholar 

  26. Ü. Lepik, Estonian J. Eng. 17, 271 (2011)

    Article  Google Scholar 

  27. Ü. Lepik, Estonian J. Eng. 18, 58 (2012)

    Article  Google Scholar 

  28. Ü. Lepik, H. Hein, Waves, Wavelets Fractals 1, 1 (2015)

    Article  Google Scholar 

  29. Ü. Lepik, H. Hein, Haar Wavelets: With Applications (Springer, 2014)

  30. J. Majak, M. Pohlak, M. Eerme, Mech. Compos. Mater. 45, 631 (2009)

    Article  ADS  Google Scholar 

  31. X. Xie, G. Jin, T. Ye, Z. Liu, Appl. Acoust. 85, 130 (2014)

    Article  Google Scholar 

  32. J. Majak, M. Pohlak, M. Eerme, T. Lepikult, Appl. Math. Comput. 211, 488 (2009)

    MathSciNet  Google Scholar 

  33. H. Hein, L. Feklistova, Mech. Syst. Signal. Pr. 25, 2257 (2011)

    Article  Google Scholar 

  34. C.H. Hsiao, Appl. Math. Comput. 265, 928 (2015)

    MathSciNet  Google Scholar 

  35. M. Kirs, M. Mikola, A. Haavajõe, E. Õunapuu, B. Shvartsman, J. Majak, Waves, Wavelets Fractals 2, 20 (2016)

    Article  Google Scholar 

  36. J. Majak, B. Shvartsman, K. Karjust, M. Mikola, A. Haavajõe, M. Pohlak, Composites Part B 80, 321 (2015)

    Article  Google Scholar 

  37. J. Majak, B.S. Shvartsman, M. Kirs, M. Pohlak, H. Herranen, Compos. Struct. 126, 227 (2015)

    Article  Google Scholar 

  38. J. Majak, M. Pohlak, K. Karjust, M. Eerme, J. Kurnitski, B.S. Shvartsman, Compos. Struct. 201, 72 (2018)

    Article  Google Scholar 

  39. M. Zakaria, A.M. Al Harthy, IOSR J. Math. 13, 47 (2017)

    Article  Google Scholar 

  40. S. Chakraverty, L. Behera, Static and Dynamic Problems of Nanobeams and Nanoplates (World Scientific, 2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chakraverty.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jena, S.K., Chakraverty, S. Dynamic behavior of an electromagnetic nanobeam using the Haar wavelet method and the higher-order Haar wavelet method. Eur. Phys. J. Plus 134, 538 (2019). https://doi.org/10.1140/epjp/i2019-12874-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12874-8

Navigation