Skip to main content
Log in

Conservation state of cast iron metalworks in European street furniture

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

This work evaluates the state of conservation of three artefacts of historical street furniture in cast iron, dating back to the second half of the nineteenth century and coming from foundries located in Italy, France and Great Britain. Form, distribution and size of graphite in cast irons, and the constituents of microstructures were evaluated by optical microscopy, whereas the alloy composition was determined by scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS). The same analytical technique, in association with Diffuse Reflectance Infrared Fourier Transform (DRIFT) and micro-Raman spectroscopies, was employed to characterize corrosion attack morphology, patina stratification and thickness. The protectiveness of the corrosion layers of the artefacts was evaluated by Electrochemical Impedance Spectroscopy (EIS). The results showed that the microstructure and alloy composition were similar to those frequently encountered in complex shape castings with variable wall thickness. On the corroded surfaces, the graphitization of the cast irons was detected. This phenomenon was accompanied by the deposition of corrosion layers of variable thickness, containing iron oxides, oxy-hydroxides, chlorides and silicon oxides. The corrosion layers of most artefacts showed a poor protectiveness, particularly when they included chlorides, detected in association with akaganeite among corrosion products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Bassi, L. Bazzocchi, Cast iron artefacts for city décor: a list of the principal typologies, in So light and yet a metal -- The art of cast iron in the 19th and 20th centuries, edited by R. Bassi, C. Biasini Selvaggi, M.G. Massafra (Barbieri Selvaggi Editori, Manduria, 2011)

  2. R. Bassi Neri, La ghisa: quando il gusto incontrò l'arte industriale (Arredo & Città, 2011)

  3. J. Gay, Cast iron: Architecture and Ornament, Function and Fantasy (John Murray Publishers Ltd., London, 1985)

  4. M. Schumacher, Seawater Corrosion Handbook (Noyes Data Corporation, New Jersey, 1979)

  5. G. Kreysa, R. Eckermann, Dechema Corrosion Handbook, Vol. 11 (VCH Publishers, New York, 1992)

  6. A. Reynaud, Corrosion of cast irons, in Shreir's Corrosion -- Corrosion and Degradation of Engineering Materials, edited by B. Cottis, Vol. 3 (Elsevier Ltd., Amsterdam, 2010)

    Google Scholar 

  7. K. Kreislova, D. Knotkova, H. Geiplova, Atmospheric corrosion of historical industrial structures, in Corrosion and Conservation of Cultural Heritage Metallic Artefacts, edited by P. Dillmann (Woodhead Publishing, Cambridge, 2013)

    Google Scholar 

  8. S. Godfrain, R. Pender, B. Martin, English Heritage -- Practical Building Conservation -- Metals (Ashgate Publishing Limited, Farnham, 2012)

  9. P. Dillmann, Corrosion and Conservation of Cultural Heritage Metallic Artefacts (Woodhead Publishing, Cambridge, 2013)

    Google Scholar 

  10. M. Tsuda, Y. Murata, Imono 54, 605 (1982)

    Google Scholar 

  11. T. Misawa et al., Corros. Sci. 14, 279 (1974)

    Google Scholar 

  12. A. Raman, B. Kuban, K. Razvan, Corros. Sci. 32, 1295 (1991)

    Google Scholar 

  13. S. Music, M. Gotic, S. Popovic, J. Mater. Sci. 28, 5744 (1993)

    ADS  Google Scholar 

  14. A.V. Ramesh Kumar, R. Singh, R.K. Nigam, J. Radioanal. Nucl. Chem. 242, 131 (1999)

    Google Scholar 

  15. P. Cambier, Clay Miner. 21, 191 (1986)

    ADS  Google Scholar 

  16. T. Ishikawa et al., Corros. Sci. 40, 1239 (1998)

    Google Scholar 

  17. R. Balasubramaniam, A.V. Ramesh Kumar, Corros. Sci. 42, 2085 (2000)

    Google Scholar 

  18. Y.Y. Chen et al., Corros. Sci. 47, 1001 (2005)

    Google Scholar 

  19. M. Natesan, G. Venkatachari, N. Palaniswamy, Corros. Sci. 48, 3584 (2006)

    Google Scholar 

  20. T. Shinohara, S. Motoda, W. Oshikawa, Mater. Sci. Forum 475--479, 61 (2005)

    Google Scholar 

  21. I. Shitanda et al., Sens. Actuators B 139, 292 (2009)

    Google Scholar 

  22. F. Zucchi et al., J. Appl. Electrochem. 36, 195 (2006)

    Google Scholar 

  23. C. Monticelli et al., Cem. Concr. Res. 87, 53 (2016)

    Google Scholar 

  24. F. Zucchi et al., Mater. Corros. 60, 199 (2009)

    Google Scholar 

  25. A. Frignani et al., Corros. Sci. 63, 29 (2012)

    Google Scholar 

  26. A. Balbo et al., Corros. Sci. 73, 80 (2013)

    Google Scholar 

  27. M. Albini et al., Mater. Corros. 67, 200 (2016)

    Google Scholar 

  28. B. Ramirez Barat et al., ChemElectroChem 5, 2698 (2018)

    Google Scholar 

  29. A. Balbo et al., Corros. Sci. 59, 204 (2012)

    Google Scholar 

  30. C. Chiavari et al., Prog. Org. Coat. 82, 91 (2015)

    Google Scholar 

  31. G. Masi, Prog. Org. Coat. 127, 286 (2019)

    Google Scholar 

  32. C. Chiavari et al., Corros. Sci. 100, 435 (2015)

    Google Scholar 

  33. M. Albini et al., Corros. Sci. 143, 84 (2018)

    Google Scholar 

  34. C. Monticelli et al., Corros. Sci. 148, 144 (2019)

    Google Scholar 

  35. P. Letardi, Proceedings of Metal 2004 (National Museum of Australia, Canberra, ACT, 2004)

  36. P. Letardi, Misure elettrochimiche per la caratterizzazione e il monitoraggio del potere protettivo di patine e rivestimenti: la tecnica EIS, in Monumenti in bronzo all'aperto, edited by P. Letardi, I. Trentin, G. Cutugno (Nardini, Firenze, 2004)

  37. E. Angelini et al., Int. J. Circ. Syst. Signal Process. 8, 240 (2014)

    Google Scholar 

  38. A. Balbo, Proceedings of EUROCORR 2014, European Federation of Corrosion Event No. 364, Pisa, 2014 (EUROCORR, 2014) Paper 7259

  39. B. Ramirez Barat et al., Electrochim. Acta 182, 751 (2015)

    Google Scholar 

  40. B. Ramirez Barat et al., Sens. Actuators B 261, 572 (2018)

    Google Scholar 

  41. S. Grassini et al., Measurement 114, 508 (2018)

    Google Scholar 

  42. C. Soffritti et al., Metall. Ital. 4, 5 (2018)

    Google Scholar 

  43. J.R. Davis, ASM Specialty Handbook, Cast Irons (ASM International, Materials Park, OH, 1996)

  44. Standard EN ISO 945-1:2008, Microstructure of cast iron -- Part 1: Graphite classification by visual analysis

  45. A.A. Pereira, L. Boehs, W.L. Guesser, J. Mater. Process. Tech. 179, 165 (2006)

    Google Scholar 

  46. J. Lacaze et al., Adv. Mater. Sci. Eng. 2013, 638451 (2013)

    Google Scholar 

  47. A. Sommerfeld, B. Tonn, Int. J. Met. 3, 39 (2009)

    Google Scholar 

  48. A.C. de Ruggiero et al., Mater. Sci. Forum 941, 663 (2018)

    Google Scholar 

  49. Y.S. Lerner, J. Mater. Eng. Perform. 12, 141 (2003)

    Google Scholar 

  50. J. Aramendia et al., J. Raman Spectrosc. 43, 1111 (2012)

    ADS  Google Scholar 

  51. S. Nowak et al., Talanta 186, 133 (2018)

    Google Scholar 

  52. S. Rahimi et al., J. Ind. Eng. Chem. 23, 33 (2015)

    Google Scholar 

  53. D. Lin-Vien, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic Press, Cambridge, Massachusetts, 1991)

    Google Scholar 

  54. J.J. Max et al., J. Chem. Phys. 126, 184507 (2007)

    ADS  Google Scholar 

  55. D.L.A. de Faria, S. Venancio Silva, M.T. de Oliveira, J. Raman Spectrosc. 28, 873 (1997)

    ADS  Google Scholar 

  56. B. Lafuente, The power of databases: the RRUFF project, in Highlights in Mineralogical Crystallography, edited by T. Armbruster, R.M. Danisi (De Gruyter, Berlin, 2015)

  57. Y. El Mendili et al., Corros. Sci. 88, 56 (2014)

    Google Scholar 

  58. S. Reguer et al., Nucl. Instrum. Methods Phys. Res. B 240, 500 (2005)

    ADS  Google Scholar 

  59. D. Neff et al., J. Raman Spectrosc. 37, 1228 (2006)

    ADS  Google Scholar 

  60. P. Colomban, Potential and drawbacks of Raman (micro) spectrometry for the understanding of iron and steel corrosion, in New Trends and Developments in Automotive System Engineering, edited by Marcello Chiaberge (IntechOpen, 2011) https://doi.org/10.5772/13436

    Google Scholar 

  61. F.R. Perez, C.A. Barrero, K.E. García, Corros. Sci. 52, 2582 (2010)

    Google Scholar 

  62. J. Monnier et al., Corros. Sci. 52, 695 (2010)

    Google Scholar 

  63. P. Refait, J.-M.R. Genin, Corros. Sci. 39, 539 (1997)

    Google Scholar 

  64. C. Remazeilles, P. Refait, Corros. Sci. 49, 844 (2007)

    Google Scholar 

  65. M. Yamashita et al., Corros. Sci. 36, 283 (1994)

    Google Scholar 

  66. D. Bersani, P.P. Lottici, A. Montenero, J. Raman Spectrosc. 30, 355 (1999)

    ADS  Google Scholar 

  67. J. Monnier et al., Appl. Phys. A 99, 399 (2010)

    ADS  Google Scholar 

  68. L. Bousselmi et al., Corros. Sci. 39, 1711 (1997)

    Google Scholar 

  69. M. Sancy et al., Corros. Sci. 52, 1222 (2010)

    Google Scholar 

  70. E. Barsoukov, J.R. Macdonald, Impedance Spectroscopy (John Wiley & Sons, Inc., New York, 1987)

  71. J.B. Jorcin et al., Electrochim. Acta 51, 1473 (2006)

    Google Scholar 

  72. C.H. Hsu, F. Mansfeld, Corros. 57, 747 (2001)

    Google Scholar 

  73. G. Trabanelli et al., Cem. Concr. Res. 35, 1804 (2005)

    Google Scholar 

  74. Y. Huang, H. Shih, F. Mansfeld, Mater. Corros. 61, 302 (2010)

    Google Scholar 

  75. A. Frignani et al., Mater. Corros. 62, 995 (2011)

    Google Scholar 

  76. F. Zanotto et al., Mater. Chem. Phys. 129, 1 (2011)

    Google Scholar 

  77. M.E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy (John Wiley & Sons, Inc., New York, 2008)

  78. G. Hao et al., Trans. Tianjin Univ. 22, 516 (2016)

    Google Scholar 

  79. F. Batmanghelich, L. Li, Y. Seo, Corros. Sci. 121, 94 (2017)

    Google Scholar 

  80. S. Sun et al., Colloids Surf., A 558, 130 (2018)

    Google Scholar 

  81. X. Zhang et al., Corros. Sci. 82, 165 (2014)

    Google Scholar 

  82. O.E. Barcia et al., Electrochim. Acta 47, 2109 (2002)

    Google Scholar 

  83. M. Stern, A.L. Geary, J. Electrochem. Soc. 104, 56 (1957)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Soffritti.

Additional information

Publisher’s Note The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soffritti, C., Calzolari, L., Balbo, A. et al. Conservation state of cast iron metalworks in European street furniture. Eur. Phys. J. Plus 134, 424 (2019). https://doi.org/10.1140/epjp/i2019-12944-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12944-y

Navigation