Skip to main content
Log in

Bilinear form, solitons, breathers and lumps of a (3 + 1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation in ocean dynamics, fluid mechanics and plasma physics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

A Comment to this article was published on 06 August 2020

Abstract

A \((3+1)\)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation in ocean dynamics, fluid mechanics and plasma physics is investigated in this paper. Bilinear form, soliton and breather solutions are derived via the Hirota method. Lump solutions are also obtained. Amplitudes of the solitons are proportional to the coefficient \(h_1\), while inversely proportional to the coefficient \(h_2\). Velocities of the solitons are proportional to the coefficients \(h_1\), \(h_3\), \(h_4\), \(h_5\) and \(h_9\). Elastic and inelastic interactions between the solitons are graphically illustrated. Based on the two-soliton solutions, breathers and periodic line waves are presented. We find that the lumps propagate along the straight lines affected by \(h_4\) and \(h_9\). Both the amplitudes of the hump and valleys of the lump are proportional to \(h_4\), while inversely proportional to \(h_2\). It is also revealed that the amplitude of the hump of the lump is eight times as large as the amplitudes of the valleys of the lump. Graphical investigation indicates that the lump which consists of one hump and two valleys is localized in all directions and propagates stably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Tanna, M. Vijayajayanthi, M. Lakshmanan, Phys. Rev. E 90, 042901 (2014)

    Article  ADS  Google Scholar 

  2. P.G. Estévez, E. Díaz, F. Domínguez-Adame, J.M. Cerveró, E. Diez, Phys. Rev. E 93, 062219 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  3. H.L. Zhen, B. Tian, Y.F. Wang, H. Zhong, W.R. Sun, Phys. Plasmas 21, 012304 (2014)

    Article  ADS  Google Scholar 

  4. X.Y. Gao, Ocean Eng. 96, 245 (2015)

    Article  Google Scholar 

  5. X.Y. Gao, Appl. Math. Lett. 91, 165 (2019)

    Article  MathSciNet  Google Scholar 

  6. X.X. Du, B. Tian, Y.Q. Yuan, Z. Du, Ann. Phys. (Berlin) 531, 1900198 (2019)

    Article  ADS  Google Scholar 

  7. X.X. Du, B. Tian, X.Y. Wu, H.M. Yin, C.R. Zhang, Eur. Phys. J. Plus 133, 378 (2018)

    Article  Google Scholar 

  8. C.C. Hu, B. Tian, H.M. Yin, C.R. Zhang, Z. Zhang, Comput. Math. Appl. 78, 166 (2019)

    Article  MathSciNet  Google Scholar 

  9. C.C. Hu, B. Tian, X.Y. Wu, Y.Q. Yuan, Z. Du, Eur. Phys. J. Plus 133, 40 (2018)

    Article  Google Scholar 

  10. M. Wang, B. Tian, Q.X. Qu, X.X. Du, C.R. Zhang, Z. Zhang, Eur. Phys. J. Plus 134, 578 (2019)

    Article  Google Scholar 

  11. L.L. Feng, S.F. Tian, H. Yan, L. Wang, T.T. Zhang, Eur. Phys. J. Plus 131, 241 (2016)

    Article  Google Scholar 

  12. Z.Z. Lan, Y.T. Gao, J.W. Yang, C.Q. Su, Q.M. Wang, Mod. Phys. Lett. B 30, 1650265 (2016)

  13. A.M. Wazwaz, Comput. Fluids 86, 357 (2013)

    Article  MathSciNet  Google Scholar 

  14. X.Y. Wu, B. Tian, H.P. Chai, Y. Sun, Mod. Phys. Lett. B 31, 1750122 (2017)

    Article  ADS  Google Scholar 

  15. X. Lü, J. Li, Nonlinear Dyn. 77, 135 (2014)

    Article  Google Scholar 

  16. B. Qin, B. Tian, L.C. Liu, X.H. Meng, W.J. Liu, Commun. Theor. Phys. 54, 1059 (2010)

    Article  ADS  Google Scholar 

  17. M.V. Prabhakar, H. Bhate, Lett. Math. Phys. 64, 1 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  18. H.C. Hu, Phys. Lett. A 373, 1750 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  19. X.P. Xin, X.Q. Liu, L.L. Zhang, Appl. Math. Comput. 215, 3669 (2010)

    MathSciNet  Google Scholar 

  20. R. Radha, M. Lakshmanan, Phys. Lett. A 197, 7 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  21. X. Yu, Y.T. Gao, Z.Y. Sun, Y. Liu, Phys. Rev. E 83, 056601 (2011)

    Article  ADS  Google Scholar 

  22. Y.Q. Yuan, B. Tian, L. Liu, Y. Sun, Z. Du, Chaos, Solitons Fract. 107, 216 (2018)

  23. Y.Q. Yuan, B. Tian, L. Liu, Y. Sun, EPL 120, 30001 (2017)

    Article  ADS  Google Scholar 

  24. X.Y. Gao, Y.J. Guo, W.R. Shan, Appl. Math. Lett. 104, 106170 (2020)

    Article  MathSciNet  Google Scholar 

  25. Z. Du, B. Tian, H.P. Chai, X.H. Zhao, Appl. Math. Lett. 102, 106110 (2020)

    Article  MathSciNet  Google Scholar 

  26. C.R. Zhang, B. Tian, Q.X. Qu, L. Liu, H.Y. Tian, Z. Angew, Math. Phys. 71, 18 (2020)

    Google Scholar 

  27. C.R. Zhang, B. Tian, Y. Sun, H.M. Yin, EPL 127, 40003 (2019)

    Article  ADS  Google Scholar 

  28. S.S. Chen, B. Tian, L. Liu, Y.Q. Yuan, C.R. Zhang, Chaos, Solitons Fract. 118, 337 (2019)

  29. W.X. Ma, Phys. Lett. A 379, 1975 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  30. H.M. Yin, B. Tian, X.C. Zhao, Appl. Math. Comput. 368, 124768 (2020)

    MathSciNet  Google Scholar 

  31. M. Wang, B. Tian, Y. Sun, H.M. Yin, Z. Zhang, Chin. J. Phys. 60, 440 (2019)

    Article  Google Scholar 

  32. C.R. Zhang, B. Tian, L. Liu, H.P. Chai, Wave Motion 84, 68 (2019)

    Article  MathSciNet  Google Scholar 

  33. Z. Du, B. Tian, H.P. Chai, X.H. Zhao, Eur. Phys. J. Plus 134, 213 (2019)

    Article  Google Scholar 

  34. H.M. Yin, B. Tian, X.C. Zhao, C.R. Zhang, C.C. Hu, Nonlinear Dyn. 97, 21 (2019)

    Article  Google Scholar 

  35. S.S. Chen, B. Tian, Y. Sun, C.R. Zhang, Ann. Phys. (Berlin) 531, 1900011 (2019)

    Article  ADS  Google Scholar 

  36. M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge Univ. Press, Cambridge, 1991)

    Book  Google Scholar 

  37. N.J. Zabusky, M.D. Kruskal, Phys. Rev. Lett. 15, 240 (1965)

    Article  ADS  Google Scholar 

  38. E.A. Kuznetsov, Sov. Phys. Dokl. 22, 507 (1977)

    ADS  Google Scholar 

  39. Y.C. Ma, Stud. Appl. Math. 60, 43 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  40. J. Villarroel, J. Prada, P.G. Estévez, Stud. Appl. Math. 122, 395 (2009)

    Article  MathSciNet  Google Scholar 

  41. R. Hirota, The Direct Method in Soliton Theory (Cambridge Univ. Press, Cambridge, 2004)

    Book  Google Scholar 

Download references

Acknowledgements

The authors express sincere thanks to the members of our discussion group for their valuable suggestions. This work has been supported by the National Natural Science Foundation of China under Grant Nos. 11772017 and 11272023 and by the Fundamental Research Funds for the Central Universities [Grant Number 50100002016105010].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Tian Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, YJ., Gao, YT., Li, LQ. et al. Bilinear form, solitons, breathers and lumps of a (3 + 1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation in ocean dynamics, fluid mechanics and plasma physics. Eur. Phys. J. Plus 135, 272 (2020). https://doi.org/10.1140/epjp/s13360-020-00204-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00204-2

Navigation