Skip to main content
Log in

The method of lines for solution of the carbon nanotubes engine oil nanofluid over an unsteady rotating disk

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The main target of the present model is to find the idea of magneto-hydrodynamics incompressible nanofluid flow past over an infinite rotating disk. The effect of the magnetic field is existed to check the nanofluid flow. The single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) engine oil can be utilized despite carrier fluid for an unsteady rotating disk. Here, we transform the nonlinear system of differential equations to the dimensionless ordinary differential equation by using similarity transformation. Then, we use the numerical method of lines to solve the nonlinear ODE via the Runge–Kutta technique. The resultant of the velocity, Nusselt number and Skin friction is demonstrated under the effect of several factors. We note that when we increase the velocity of the rotating disk, fluid velocity and temperature are safely increased. Finally, we note that the outcomes obtained demonstrate that the SWCNTs nanofluids improved the heat transfer more than the MWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993)

    Article  ADS  Google Scholar 

  2. D.S. Bethune, C.H. Kiang, M.S. Devries, G. Gorman, R. Savoy, J. Vazquez et al., Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993)

    Article  ADS  Google Scholar 

  3. T. Von Karman, Uber laminar and turbulent reibung. Z. Angew. Math. Mech. 1, 233–235 (1921)

    Article  MATH  Google Scholar 

  4. M. Turkyilmazoglu, Exact analytical solutions for heat and mass transfer of MHD slip flow in nanofluids. Chem. Eng. Sci. 84, 182–187 (2012)

    Article  Google Scholar 

  5. K. Millsaps, K. Pohlhausen, Heat transfer by laminar flow from a rotating plate. J. Aeronaut. Sci. 19(2), 120–126 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  6. M.M. Rashidi, N. Kavyani, S. Abelman, Investigation of entropy generation in MHD and slip flow over a rotating porous disk with variable properties. Int. J. Heat Mass Transf. 70, 892–917 (2014)

    Article  Google Scholar 

  7. N.A. Khan, S. Aziz, N.A. Khan, MHD flow of Powell–Eyring fluid over a rotating disk. J. Taiwan Inst. Chem. Eng. 45(6), 2859–2867 (2014)

    Article  Google Scholar 

  8. M.F.L. De Volder et al., Carbon nanotubes: present and future commercial applications. Science 339, 535–543 (2013)

    Article  ADS  Google Scholar 

  9. S.M.S. Murshed, C.A. Nieto de Castro, Superior thermal features of carbon nanotubes-based nano fluids—a review. Renew. Sustain. Energy Rev. 37, 155–167 (2014)

    Article  Google Scholar 

  10. C. Negin, S. Ali, Q. Xie, Application of nanotechnology for enhancing oil recovery, a review. Petroleum 2, 324–333 (2016)

    Article  Google Scholar 

  11. Z. Zaidi, S.T. Mohyud-din, B.B. Mohsen, Convective heat transfer and MHD analysis of wall jet flow of nanofluids containing carbon nanotubes. Eng. Comput. 343, 1–9 (2017)

    Google Scholar 

  12. R.U. Haq, F. Shahzad, Q.M. Al-Mdallal, MHD pulsatile flow of engine oil based carbon nanotubes between two concentric cylinders. Results Phys. 7, 57–68 (2017)

    Article  ADS  Google Scholar 

  13. N. Hordy, D. Rabilloud, J.-L. Meunier, S. Coulombe, A stable carbon nanotube nanofluid for latent heat-driven volumetric absorption solar heating applications. J. Nanomater. 16, 248 (2015)

    Google Scholar 

  14. Q. Xue, Model for thermal conductivity of carbon nanotube-based composites. Phys. B: Condens. Matter 368, 302–307 (2005)

    Article  ADS  Google Scholar 

  15. A.U. Rehman et al., Effects of single and multi-walled carbon nano tubes on water and engine oil based rotating fluids with internal heating. Adv. Powder Technol. 28, 1991–2002 (2017)

    Article  Google Scholar 

  16. R. Ellahi, M. Hassan, A. Zeeshan, Study of natural convection MHD nanofluid by means of single and multiwalled carbon nanotubes suspended in a salt water solution. IEEE Trans. Nanotechnol. 14, 1–10 (2015)

    Article  Google Scholar 

  17. T. Hayat, T. Nasir, M.I. Khan, A. Alsaedi, Non-Darcy flow of water-based single (SWCNTs) and multiple (MWCNTs) walls carbon nanotubes with multiple slip conditions due to rotating disk. Results Phys. 9, 390–399 (2018)

    Article  ADS  Google Scholar 

  18. S. Farooq, T. Hayat, A. Alsaedi, S. Asghar, Mixed convection peristalsis of carbon nanotubes with thermal radiation and entropy generation. J. Mol. Liq. 250, 451–467 (2018)

    Article  Google Scholar 

  19. M. Terrones, Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Ann. Rev. Mater. Res. 33, 491–501 (2003)

    Article  Google Scholar 

  20. R.I. Hamilton, O.K. Crosser, Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fundam. 1, 182–191 (1962)

    Article  Google Scholar 

  21. D.J. Jaffery, Conduction through a random suspension of spheres. Proc. R. Soc. Lond. A. Math. Phys. Sci. 335, 355–367 (1973)

    ADS  Google Scholar 

  22. R. Davis, The effective thermal conductivity of a composite material with spherical inclusions. Int. J. Thermophys. 7, 609–620 (1986)

    Article  ADS  Google Scholar 

  23. S. Lu, H. Lin, Effective conductivity of composites containing aligned spherical inclusions of finite conductivity. J. Appl. Phys. 79, 6761–6769 (1998)

    Article  ADS  Google Scholar 

  24. V.J. Rossow, On flow of electrically conducting fluids over a flat plate in the presence of a transverse magnetic field. Technical Report. Arch. & Image Lib. (1958)

  25. H. Alfvén, Existence of electromagnetic-hydrodynamic waves. Nature 150(3805), 405 (1942)

    Article  ADS  Google Scholar 

  26. M. Ramzan, N. Ullah, J.D. Chung, D. Lu, U. Farooq, Buoyancy effects on the radiative magneto Micropolar nanofluid flow with double stratification, activation energy and binary chemical reaction. Sci. Rep. 7(1), 12901 (2017)

    Article  ADS  Google Scholar 

  27. D. Lu et al., On three-dimensional MHD Oldroyd-B fluid flow with nonlinear thermal radiation and homogeneous–heterogeneous reaction. J. Braz. Soc. Mech. Sci. Eng. 40(8), 387 (2018)

    Article  Google Scholar 

  28. M.I. Khan, T. Hayat, M. Waqas, A. Alsaedi, M.I. Khan, Effectiveness of radiative heat flux in MHD flow of Jeffrey-nanofluid subject to Brownian and thermophoresis diffusions. J. Hydrodyn. 31, 421–427 (2019)

    Article  ADS  Google Scholar 

  29. Z. Yan, J. Jiang, Y. Bai, MHD flow and heat transfer analysis of fractional Oldroyd-B nanofluid between two coaxial cylinders. Comput. Math. Appl. 78(10), 3408–3421 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. N. Kelson, A. Desseaux, Note on porous rotating disk flow. ANZIAM J. 42, 837–855 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Turkyilmazoglu, Nanofluid flow and heat transfer due to a rotating disk. Comput. Fluids 94, 139–146 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. J.A. Khan, M. Mustafa, T. Hayat et al., A revised model to study the MHD nanofluid flow and heat transfer due to rotating disk: numerical solutions. Neural Comput. Appl. 30, 957–964 (2018)

    Article  Google Scholar 

  33. V.K. Joshi, P. Ram, R.K. Sharma et al., Porosity effect on the boundary layer Bodewadt flow of a magnetic nanofluid in the presence of geothermal viscosity. Eur. Phys. J. Plus 132, 254 (2017). https://doi.org/10.1140/epjp/i2017-11511-0

    Article  Google Scholar 

  34. N. Acharya, K. Das, P. Kumar Kundu, Fabrication of active and passive controls of nanoparticles of unsteady nanofluid flow from a spinning body using HPM. Eur. Phys. J. Plus 132, 323 (2017). https://doi.org/10.1140/epjp/i2017-11629-y

    Article  Google Scholar 

  35. A.M. Salem, G. Ismail, R. Fathy, Unsteady MHD boundary layer stagnation point flow with heat and mass transfer in nanofluid in the presence of mass fluid suction and thermal radiation. Eur. Phys. J. Plus 130, 113 (2015). https://doi.org/10.1140/epjp/i2015-15113-6

    Article  Google Scholar 

  36. C.S.K. Raju, S.U. Mamatha, P. Rajadurai et al., Nonlinear mixed thermal convective flow over a rotating disk in suspension of magnesium oxide nanoparticles with water and EG. Eur. Phys. J. Plus 134, 196 (2019). https://doi.org/10.1140/epjp/i2019-12552-y

    Article  Google Scholar 

  37. A.Y. Sayed, M.S. Abdel-wahed, Entropy analysis for an MHD nanofluid with a microrotation boundary layer over a moving permeable plate. Eur. Phys. J. Plus 135, 106 (2020). https://doi.org/10.1140/epjp/s13360-020-00181-6

    Article  Google Scholar 

  38. U. Shankar, N.B. Naduvinamani, Magnetized impacts of Cattaneo–Christov double-diffusion models on the time-dependent squeezing flow of Casson fluid: a generalized perspective of Fourier and Fick’s laws. Eur. Phys. J. Plus 134, 344 (2019). https://doi.org/10.1140/epjp/i2019-12715-x

    Article  Google Scholar 

  39. R. Dhanai, P. Rana, L. Kumar, Multiple solutions in MHD flow and heat transfer of Sisko fluid containing nanoparticles migration with a convective boundary condition: critical points. Eur. Phys. J. Plus 131, 142 (2016). https://doi.org/10.1140/epjp/i2016-16142-3

    Article  Google Scholar 

  40. P.M. Krishna, N. Sandeep, R.P. Sharma, Computational analysis of plane and parabolic flow of MHD Carreau fluid with buoyancy and exponential heat source effects. Eur. Phys. J. Plus 132, 202 (2017). https://doi.org/10.1140/epjp/i2017-11469-9

    Article  Google Scholar 

  41. M. Khan, J. Ahmed, L. Ahmad, Chemically reactive and radiative von Kármán swirling flow due to a rotating disk. Appl. Math. Mech. 39, 1295–1310 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. N. Bachok, A. Ishak, I. Pop, Flow and heat transfer over a rotating porous disk in a nanofluid. Phys. B 406(9), 1767–1772 (2011)

    Article  ADS  Google Scholar 

  43. F. Saba, N. Ahmed, U. Khan, S.T. Mohyud-Din, A novel coupling of (CNT-Fe3O4/H2O) hybrid nanofluid for improvements in heat transfer for flow in an asymmetric channel with dilating/squeezing walls. Int. J. Heat Mass Transf. 136, 186–195 (2019). https://doi.org/10.1140/epjp/i2018-12315-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to the Referees and Editors for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sadat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baleanu, D., Sadat, R. & Ali, M.R. The method of lines for solution of the carbon nanotubes engine oil nanofluid over an unsteady rotating disk. Eur. Phys. J. Plus 135, 788 (2020). https://doi.org/10.1140/epjp/s13360-020-00763-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00763-4

Navigation