Skip to main content
Log in

The (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation: its solitons and Jacobi elliptic function solutions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The search for exact solutions of nonlinear evolution models with different wave structures has achieved significant attention in recent decades. The present paper studies a nonlinear (2 + 1)-dimensional evolution model describing the propagation of nonlinear waves in Heisenberg ferromagnetic spin chain system. The intended aim is carried out by considering a specific transformation and adopting a modified version of the Jacobi elliptic expansion method. As a result, a number of solitons and Jacobi elliptic function solutions to the Heisenberg ferromagnetic spin chain equation are formally derived. Several three-dimensional plots are presented to demonstrate the dynamical features of the bright and dark soliton solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. N.A. Kudryashov, Method for finding highly dispersive optical solitons of nonlinear differential equation. Optik 206, 163550 (2020)

    Article  ADS  Google Scholar 

  2. N.A. Kudryashov, Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations. Appl. Math. Comput. 371, 124972 (2020)

    MathSciNet  MATH  Google Scholar 

  3. K. Hosseini, M. Mirzazadeh, M. Ilie, J.F. Gómez-Aguilar, Soliton solutions of the Sasa–Satsuma equation in the monomode optical fibers including the beta-derivatives. Optik 224, 165425 (2020)

    Article  ADS  Google Scholar 

  4. K. Hosseini, M. Mirzazadeh, M. Ilie, J.F. Gómez-Aguilar, Biswas–Arshed equation with the beta time derivative: optical solitons and other solutions. Optik 217, 164801 (2020)

    Article  ADS  Google Scholar 

  5. K. Hosseini, M. Mirzazadeh, M. Ilie, S. Radmehr, Dynamics of optical solitons in the perturbed Gerdjikov–Ivanov equation. Optik 206, 164350 (2020)

    Article  ADS  Google Scholar 

  6. J.H. He, X.H. Wu, Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30, 700–708 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  7. A.T. Ali, E.R. Hassan, General expa function method for nonlinear evolution equations. Appl. Math. Comput. 217, 451–459 (2010)

    MathSciNet  MATH  Google Scholar 

  8. K. Hosseini, M.S. Osman, M. Mirzazadeh, F. Rabiei, Investigation of different wave structures to the generalized third-order nonlinear Scrödinger equation. Optik 206, 164259 (2020)

    Article  ADS  Google Scholar 

  9. K. Hosseini, M. Mirzazadeh, F. Rabiei, H.M. Baskonus, G. Yel, Dark optical solitons to the Biswas–Arshed equation with high order dispersions and absence of self-phase modulation. Optik 209, 164576 (2020)

    Article  ADS  Google Scholar 

  10. K. Hosseini, R. Ansari, A. Zabihi, A. Shafaroody, M. Mirzazadeh, Optical solitons and modulation instability of the resonant nonlinear Schrӧdinger equations in (3+1)-dimensions. Optik 209, 164584 (2020)

    Article  ADS  Google Scholar 

  11. H.C. Ma, Z.P. Zhang, A.P. Deng, A new periodic solution to Jacobi elliptic functions of MKdV equation and BBM equation. Acta Mathematicae Applicatae Sinica 28, 409–415 (2012)

    Article  MathSciNet  Google Scholar 

  12. M.M.A. El-Sheikh, A.R. Seadawy, H.M. Ahmed, A.H. Arnous, W.B. Rabie, Dispersive and propagation of shallow water waves as a higher order nonlinear Boussinesq-like dynamical wave equations. Phys. A 537, 122662 (2020)

    Article  MathSciNet  Google Scholar 

  13. K. Hosseini, M. Matinfar, M. Mirzazadeh, A (3+1)-dimensional resonant nonlinear Schrödinger equation and its Jacobi elliptic and exponential function solutions. Optik 207, 164458 (2020)

    Article  ADS  Google Scholar 

  14. K. Hosseini, M. Mirzazadeh, J. Vahidi, R. Asghari, Optical wave structures to the Fokas–Lenells equation. Optik 207, 164450 (2020)

    Article  ADS  Google Scholar 

  15. K. Hosseini, M. Mirzazadeh, M.S. Osman, M. Al Qurashi, D. Baleanu, Solitons and Jacobi elliptic function solutions to the complex Ginzburg–Landau equation. Front. Phys. 8, 225 (2020)

    Article  Google Scholar 

  16. K. Hosseini, M. Mirzazadeh, Soliton and other solutions to the (1+2)-dimensional chiral nonlinear Schrödinger equation. Commun. Theor. Phys. 72, 125008 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  17. M.M. Latha, C.C. Vasanthi, An integrable model of (2+1)-dimensional Heisenberg ferromagnetic spin chain and soliton excitations. Phys. Scr. 89, 065204 (2014)

    Article  ADS  Google Scholar 

  18. B.Q. Li, Y.L. Ma, Characteristics of rogue waves for a (2+1)-dimensional Heisenberg ferromagnetic spin chain system. J. Magn. Magn. Mater. 474, 537–543 (2019)

    Article  ADS  Google Scholar 

  19. M. Inc, A.I. Aliyu, A. Yusuf, D. Baleanu, Optical solitons and modulation instability analysis of an integrable model of (2+1)-dimensional Heisenberg ferromagnetic spin chain equation. Superlattices Microstruct. 112, 628–638 (2017)

    Article  ADS  Google Scholar 

  20. Y.L. Ma, B.Q. Li, Y.Y. Fu, A series of the solutions for the Heisenberg ferromagnetic spin chain equation. Math. Methods Appl. Sci. 41, 3316–3322 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. M.S. Osman, K.U. Tariq, A. Bekir, A. Elmoasry, N.S. Elazab, M. Younis, M. Abdel-Aty, Investigation of soliton solutions with different wave structures to the (2+1)-dimensional Heisenberg ferromagnetic spin chain equation. Commun. Theor. Phys. 72, 035002 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  22. A.R. Seadawy, N. Nasreen, D. Lu, M. Arshad, Arising wave propagation in nonlinear media for the (2+1)-dimensional Heisenberg ferromagnetic spin chain dynamical model. Phys. A 538, 122846 (2019)

    Article  MathSciNet  Google Scholar 

  23. B.Q. Li, Y.L. Ma, Lax pair, Darboux transformation and Nth-order rogue wave solutions for a (2+1)-dimensional Heisenberg ferromagnetic spin chain equation. Comput. Math. Appl. 77, 514–524 (2019)

    Article  MathSciNet  Google Scholar 

  24. B. Guan, S. Chen, Y. Liu, X. Wang, J. Zhao, Wave patterns of (2+1)-dimensional nonlinear Heisenberg ferromagnetic spin chains in the semiclassical limit. Results Phys. 16, 102834 (2020)

    Article  Google Scholar 

  25. X.H. Zhao, B. Tian, D.Y. Liu, X.Y. Wu, J. Chai, Y.J. Guo, Dark solitons interaction for a (2+1)-dimensional nonlinear Schrödinger equation in the Heisenberg ferromagnetic spin chain. Superlattices Microstruct. 100, 587–595 (2016)

    Article  ADS  Google Scholar 

  26. M.F. Uddin, M.G. Hafez, Z. Hammouch, D. Baleanu, Periodic and rogue waves for Heisenberg models of ferromagnetic spin chains with fractional beta derivative evolution and obliqueness. Waves Random Complex Media (2020). https://doi.org/10.1080/17455030.2020.1722331

    Article  Google Scholar 

  27. K. Hosseini, L. Kaur, M. Mirzazadeh, H.M. Baskonus, 1-soliton solutions of the (2+1)-dimensional Heisenberg ferromagnetic spin chain model with the beta time derivative. Opt. Quantum Electron. (2021). https://doi.org/10.1007/s11082-021-02739-9

    Article  Google Scholar 

  28. M. Tahir, A.U. Awan, M.S. Osman, D. Baleanu, M.M. Alqurashi, Abundant periodic wave solutions for fifth-order Sawada–Kotera equations. Results Phys. 17, 103105 (2020)

    Article  Google Scholar 

  29. J.G. Liu, W.H. Zhu, M.S. Osman, W.X. Ma, An explicit plethora of different classes of interactive lump solutions for an extension form of 3D-Jimbo–Miwa model. Eur. Phys. J. Plus 135, 412 (2020)

    Article  Google Scholar 

  30. M.S. Osman, M. Inc, J.G. Liu, K. Hosseini, A. Yusuf, Different wave structures and stability analysis for the generalized (2+1)-dimensional Camassa–Holm–Kadomtsev–Petviashvili equation. Phys. Scr. 95, 035229 (2020)

    Article  Google Scholar 

  31. J.G. Liu, M.S. Osman, W.H. Zhu, L. Zhou, D. Baleanu, The general bilinear techniques for studying the propagation of mixed-type periodic and lump-type solutions in a homogenous-dispersive medium. AIP Adv. 10, 105325 (2020)

    Article  ADS  Google Scholar 

  32. M.S. Osman, H. Rezazadeh, M. Eslami, Traveling wave solutions for (3+1) dimensional conformable fractional Zakharov–Kuznetsov equation with power law nonlinearity. Nonlinear Eng. 8, 559–567 (2019)

    Article  ADS  Google Scholar 

  33. H.M. Srivastava, D. Baleanu, J.A.T. Machado, M.S. Osman, H. Rezazadeh, S. Arshed, H. Günerhan, Traveling wave solutions to nonlinear directional couplers by modified Kudryashov method. Phys. Scr. 95, 075217 (2020)

    Article  ADS  Google Scholar 

  34. B.Q. Li, Loop-like kink breather and its transition phenomena for the Vakhnenko equation arising from high-frequency wave propagation in electromagnetic physics. Appl. Math. Lett. 112, 106822 (2021)

    Article  MathSciNet  Google Scholar 

  35. B.Q. Li, Y.L. Ma, Extended generalize d Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrödinger equation. Appl. Math. Comput. 386, 125469 (2020)

    MathSciNet  Google Scholar 

  36. B.Q. Li, Y.L. Ma, Interaction dynamics of hybrid solitons and breathers for extended generalization of Vakhnenko equation. Nonlinear Dyn. 102, 1787–1799 (2020)

    Article  Google Scholar 

  37. H. Rezazadeh, New solitons solutions of the complex Ginzburg–Landau equation with Kerr law nonlinearity. Optik 167, 218–227 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Baleanu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, K., Salahshour, S., Mirzazadeh, M. et al. The (2 + 1)-dimensional Heisenberg ferromagnetic spin chain equation: its solitons and Jacobi elliptic function solutions. Eur. Phys. J. Plus 136, 206 (2021). https://doi.org/10.1140/epjp/s13360-021-01160-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01160-1

Navigation