Skip to main content
Log in

Integrated model for planet stress–strain state development: main hypotheses for planet solid crust formation and growth

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In contrast to the generally accepted lithospheric plate movement theory, some other mechanisms for planet development are suggested in this paper. This paper suggests an initial integrated dynamic mechanical model, first in terms of the growth of an originally liquid-body planet, and then as applied to planet’s solid crust growth using the Earth as an example. The model concept is based on three generally accepted facts in evidence, namely: (1) the Earth’s crust thickness is about 70 to 80 km under the continents, while being considerably thinner—about 2 to 4 km—under the ocean; (2) there are long-length mid-ocean mountain ranges under the ocean; (3) the youngest crust lies under the ocean mountain ranges. The fourth fundamental point is the front-growing liquid/solid body mechanics as addressed by the author. It is supposed that once upon a time the Earth was liquid. The mass of the planet was equal to the present one. Under gravity, its growth resulted in appearance of high pressures. Of great importance was the atom behavior under high pressures. On a liquid planet, there was a possibility of appearance of various substances. Then the solid crust began to grow. Under gravity, the solid crust growth process can only originate from a substance when the solid-state density of the substance is less than its liquid-state one. Development of the solid crust’s strain–stress state results from changes in the substance density at the crust’s growth front. A distinctive feature of the front-growing body mechanics is the necessity of setting the strain tensor at the front. Here, as a first step, the growing crust effect on the planet’s stress–strain state kinetics is demonstrated, considering that the stress–strain state results in a decrease in the subcrust pressure, which would inevitably lead to an increase in the planet volume, followed by breakage of the newly formed crust. The second part of the paper addresses the stress–strain state kinetics of the growing crust in interaction with the gravity. Results of mathematical simulation confirm the validity of the original hypotheses put forward by the author. It should be noted that the author considers the suggested model of planet development, where the planet crust began to form, as an intermediate model. It is a planet formed by hydrogen atoms at zero temperature that should be assumed to be an initial model. However, this would inevitably bring about the question of the temperature and planet expansion. These questions will be addressed in a separate study to be performed by the author.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.L. Wegener, Die Entstehung der Kontinente. Geol. Rundsch. 3(4), 276–292 (1912). (Bibcode: 1912 GeoRu…3…276 W)

    Article  ADS  Google Scholar 

  2. R. Meservey, Topological inconsistency of continental drift on the present-sized Earth. Science 166, 609–611 (1969)

    Article  ADS  Google Scholar 

  3. K. Vogel, Global model of the expanding Eath, in Frontiers of Fundamental Physics. ed. by M. Barone, F. Selleri (Plenum Press, New York, 1994)

    Google Scholar 

  4. A.M.C. Sengör. The large-wavelength deformations of the lithosphere: Materials for a history of the evolution of thought from the earliest times to plate tectonics. The Geological Society of America, Memoir 196. Boulder, Colorado USA, p 347 (2003)

  5. A.A. Marakushev, Origin of the Earth and the Nature of Its Endogenous Activity (Nauka, Moscow, 1999), p. 252

    Google Scholar 

  6. S.W. Carey, The Expanding Eath (Elseiver, Amsterdam, 1976), p. 488

    Google Scholar 

  7. V.F. Blinov. Main fields of investigation on the expanding Earth, in Problems of Expansion and Pulsation of the Earth. Moscow: Nauka, p. 191 (1984)

  8. R.A. Turusov, S.P. Davtyan et al., Mechanical phenomena under conditions of solidification front propagation. Proc. Acad. Sci. USSR 247(1), 97–99 (1979)

    Google Scholar 

  9. R.A. Turusov, B.A. Rozenberg, N.S. Yenikolopyan, On formation of stresses and breaks in the process of frontal solidification. Proc. Acad. Sci. USSR 260(1), 90–94 (1981)

    Google Scholar 

  10. V.V. Metlov, R.A. Turusov, On formation of the stress state of viscoelastic bodies growing under frontal consolidation conditions. Proc. Acad. Sci. USSR Solid Mech. 6, 145–160 (1985)

    Google Scholar 

  11. V.V. Metlov, R.A. Turusov, On formation of stresses under frontal solidification of composites. Mech. Comp. Mater. 6, 1079–1085 (1985)

    Google Scholar 

  12. R.A. Turusov, V.V. Metlov, Continuum theory of the mechanical phenomena under frontal solidification of polymers and composites. High-Mol. Compd. XXXV(3), 54–63 (1994)

    Google Scholar 

  13. V.V. Metlov, R.A. Turusov, The law of interaction of two solids growing in a viscous medium. Proc. Acad. Sci. USSR 293(1), 94–98 (1987)

    Google Scholar 

  14. V.V. Metlov, R.A. Turusov, Mechanical aspects of multiple-center hardening of a viscous medium. Proc. Acad. Sci. USSR Solid Mech. 6, 143–147 (1987)

    Google Scholar 

  15. D.Y. Pushcharovsky, Y.M. Pushcharovsky, New insight into the composition and the structure of the deep layers of the terrestrial planets. Moscow Univ. Bull. Ser. Geol. 4(1), 3–9 (2016)

    Article  Google Scholar 

  16. V.P. Trubitsyn, Techtonics of floating continents. RAS Bull. 1(75), 10–21 (2005)

    Google Scholar 

  17. L.S. Doucet, O. Laurent, D.A. Ionov, N. Mattielli, V. Debaille, W. Debouge, Archean lithospheric differentiation: insights from Fe and Zn isotopes. Geology (2020). https://doi.org/10.1130/G47647.1

    Article  Google Scholar 

Download references

Acknowledgements

The study is funded by State Task, Topic No 45.11 (No State Registration: AAAA-A17-117040610309-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Turusov.

Ethics declarations

Conflict of interest

The author declare that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turusov, R.A. Integrated model for planet stress–strain state development: main hypotheses for planet solid crust formation and growth. Eur. Phys. J. Plus 136, 830 (2021). https://doi.org/10.1140/epjp/s13360-021-01825-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01825-x

Navigation