Skip to main content
Log in

Multifractal and optical characterization of silver nanoparticles embedded in carbon films prepared in C2H2 + N2 gas mixtures

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Diamond-like carbon (DLC) coatings are mostly known for their excellent mechanical and tribological properties. However, DLC coatings also can be served as coatings with metal impurities which are attractive due to their special structural and electrical properties. In this study, silver nanoparticles are co-deposited on carbon films using RF-sputtering and RF-PECVD methods. Films are made on BK7 substrates under different working pressures (i.e., 17.5–20.5 mTorr). In this regard, according to ISO 25178–2: 2012, 2-3D Ag-DLC thin film surfaces are characterized using the atomic force microscopy method via advanced analysis implicating multifractal and morphological properties. Statistical and Minkowski functions results obtained from AFM data demonstrate that the surface topography of the films is changed by altering the deposition pressure. Based on the deposition pressure, the samples prepared at 20.5 mTorr and 19.5 mTorr have the highest and lowest values of the highest spatial complexity compared to other samples, respectively. The generalized dimension and mass exponent trend reveals the multifractal character of the studied surfaces, which the results of the multifractal study of the films are in good agreement with other AFM statistical data. In addition, with the help of EDS analysis, the presence of carbon, nitrogen, and silver elements is confirmed with different weight percentage. The damping and flattening of the surface plasmon resonance (SPR) peaks in the UV–visible absorption spectrum of the samples can be witnessed at different working pressures, which is evaluated and analyzed by AFM and EDS results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. O.O. Abegunde, E.T. Akinlabi, O.P. Oladijo, S. Akinlabi, A.U. Ude, Overview of thin film deposition techniques. AIMS Materials Science 6(2), 174–199 (2019). https://doi.org/10.3934/matersci.2019.2.174

    Article  Google Scholar 

  2. P. P. Das, Application of modified PROMETHEE method for coatingquality enhancement in thin film deposition processes, Advances in Materials and Processing Technologies, (2021).https://doi.org/10.1080/2374068X.2021.1945292

  3. M. Croes, Be. Akhavan, O. Sharifahmadian, H. Fan, R. Mertens, R. P Tan, A. Chunara, A. A Fadzil, S. G Wise, M. C Kruyt, S. Wijdicks, W. E Hennink, M. MM Bilek, S. A. Yavari, A multifaceted biomimetic interface to improve the longevity of orthopedic implants, Acta Biomaterialia, 110, 2020, 266–279. https://doi.org/10.1016/j.actbio.2020.04.020

  4. A. Achour, R. Lucio-Porto, M. Chaker, A. Arman, A. Ahmadpourian, M.A. Soussou, M. Boujtita, L. Le Brizoual, M.A. Djouadi, T. Brousse, Electrochem. Commun. 77, 40–43 (2017). https://doi.org/10.1016/j.elecom.2017.02.011

    Article  Google Scholar 

  5. A. Achour, M. Chaker, H. Achour, A. Arman, M. Islam, M. Mardani, M. Boujtita, L. Le Brizoual, M.A. Djouadi, T. Brousse, Role of nitrogen doping at the surface of titanium nitride thin films towards capacitive charge storage enhancement. J. Power Sources 359, 349–354 (2017). https://doi.org/10.1016/j.jpowsour.2017.05.074

    Article  ADS  Google Scholar 

  6. A. Das, V. Chawla, R. S. Matos, H. D. da Fonseca Filho, R. P. Yadav, Ş. Ţălu, S. Kumar, Surface microtexture and wettability analysis of quasi two-dimensional (Ti, Al) N thin films using fractal geometry, Surface and Coatings Technology, 421, 2021, 127420. https://doi.org/10.1016/j.surfcoat.2021.127420

  7. L. Galdun, V. Vega, Z. Vargová, E.D. Barriga-Castro, C. Luna, R. Varga, V.M. Prida, Intermetallic Co2FeIn heusler alloy nanowires for spintronics applications. ACS Applied Nano Materials 1(12), 7066–7074 (2018). https://doi.org/10.1021/acsanm.8b01836

    Article  Google Scholar 

  8. K. Rahimi, A. Yazdani, M. Ahmadirad, Graphene quantum dots enhance UV photoresponsivity and surface-related sensing speed of zinc oxide nanorod thin films. Mater. Des. 140, 222–230 (2018). https://doi.org/10.1016/j.matdes.2017.12.010

    Article  Google Scholar 

  9. C. AC Stewart, B. Akhavan, M. Santos, J. Hung, C. L Hawkins, S. Bao, S. G Wise, M. MM Bilek, Cellular responses to radical propagation from ion-implanted plasma polymer surfaces, Applied Surface Science, 456, 2018, 701–710. https://doi.org/10.1016/j.apsusc.2018.06.111

  10. A. Ghaderi, A. Shafiekhani, S. Solaymani, Ş. Ţălu, He. D. da Fonseca Filho, N. S Ferreira, R. S. Matos, H. Zahrabi, L. Dejam, Advanced microstructure, morphology and CO gas sensor properties of Cu/Ni bilayers at nanoscale, Sci Rep., 12(1), 2022, 12002. https://doi.org/10.1038/s41598-022-16347-4

  11. C. AC Stewart, B. Akhavan, J. Hung, S. Bao, J.-Hyeog Jang, S. G Wise, M. MM Bilek, Multifunctional protein-immobilized plasma polymer films for orthopedic applications , ACS Biomater. Sci. Eng, 4(12), 2018, 4084–4094. https://doi.org/10.1021/acsbiomaterials.8b00954

  12. J. Robertson, Diamond-like amorphous carbon. Mater. Sci. Eng. R 37, 129–281 (2002)

    Article  Google Scholar 

  13. S. Saini, S. Reshmi, G. M. Gouda, A. Kumar S., Sriram K. V., K. Bhattacharjee, Low reflectance of carbon nanotube and nanoscroll-based thin film coatings: a case study, Nanoscale Advances,3, (2021), 3184–3198 .https://doi.org/10.1039/D0NA01058H

  14. H.R. Humud, S.J. Kadhem, A.A. Abbass, Synthesis of nanostructure diamond-like carbon thin films by atmospheric pressure plasma. AIP Conf. Proc. 2290, 050020 (2020). https://doi.org/10.1063/5.0027500

    Article  Google Scholar 

  15. Q. Yu, X. Chen, C. Zhang, J. Luo, Influence factors on mechanisms of superlubricity in DLC films: A review, Frontiers in Mechanical Engineering, 6(65), (2020). https://doi.org/10.3389/fmech.2020.00065

  16. H. Gholamali, A. Shafiekhani, E. Darabi, S.M. Elahi, Synthesis of Ag and Au nanoparticles embedded in carbon film: Optical, crystalline and topography analysis. Results in physics 8, 336–340 (2018). https://doi.org/10.1016/j.rinp.2017.12.033

    Article  ADS  Google Scholar 

  17. Q. Zeng, Z. Ning, High-temperature tribological properties of diamond-like carbon films: A review, Reviews on Advanced Materials Science, 60, (2021)276–292.https://doi.org/10.1515/rams-2021-0028

  18. M. Zhang, T. Xie, X. Qian, Y. Zhu, X. Liu, Mechanical Properties and Biocompatibility of Ti-doped Diamond-like Carbon Films. ACS Omega 5(36), 22772–22777 (2020). https://doi.org/10.1021/acsomega.0c01715

    Article  Google Scholar 

  19. Ar. Zarei, A. Shafiekhani, Surface-enhanced Raman scattering (SERS) of Methyl Orange on Ag-DLC nanoparticles, Materials Chemistry and Physics, 242, (2020), 122559. https://doi.org/10.1016/j.matchemphys.2019.122559

  20. O. Sharifahmadian, C. Zhai, J. Hung, G. Shineh, C.A.C. Stewart, A.A. Fadzil, M. Ionescu, Y. Gan, S.G. Wise, B. Akhavan, Mechanically robust nitrogen-rich plasma polymers: Biofunctional interfaces for surface engineering of biomedical implants. Materials Today Advances 12, 100188 (2021). https://doi.org/10.1016/j.mtadv.2021.100188

    Article  Google Scholar 

  21. Xi. Zhou, Y. Zheng, T. Shimizu, C. Euaruksakul, S. Tunmee, T. Wang, H. Saitoh, Y. Tang, Colorful Diamond-Like Carbon Films from Different Micro/ Nanostructures, Adv. Optical Mater., 8(11), (2020), 1902064. https://doi.org/10.1002/adom.201902064

  22. A. Modabberasl, P. Kameli, M. Ranjbar, H. Salamati, R. Ashiri, Fabrication of DLC thin films with improved diamond-like carbon character by the application of external magnetic field. Carbon 94(2015), 485–493 (2015). https://doi.org/10.1016/j.carbon.2015.06.081

    Article  Google Scholar 

  23. Y. Wu, J. Chen, H. Li, L. Ji, Y. Ye, H. Zhou, Preparation and properties of Ag/DLC nanocomposite films fabricated by unbalanced magnetron sputtering. Appl. Surf. Sci. 284, 165–170 (2013). https://doi.org/10.1016/j.apsusc.2013.07.074

    Article  ADS  Google Scholar 

  24. D. K. Rajak, A. Kumar, A. Behera, P. L. Menezes, Diamond-Like Carbon (DLC) Coatings: Classification, Properties, and Applications, Appl. Sci.11(10), (2021),4445; https://doi.org/10.3390/app11104445

  25. A. Arman, C. Luna, M. Mardani, Fa. Hafezi, A. Achour, A. Ahmadpourian, Magnetoresistance of nanocomposite copper/carbon thin films, Journal of Materials Science: Materials in Electronics, 28(6), (2017), 4713–4718. https://doi.org/10.1007/s10854-016-6113-x

  26. T. Ghodselahi, S. Hoornam, M.A. Vesaghi, B. Ranjbar, A. Azizi, H. Mobasheri, Fabrication Localized Surface Plasmon Resonance sensor chip of gold nanoparticles and detection lipase–osmolytes interaction. Appl. Surf. Sci. 314, 138–144 (2014). https://doi.org/10.1016/j.apsusc.2014.06.095

    Article  ADS  Google Scholar 

  27. M. Hekmat, F. Rostamian, A. Shafiekhani, Improving solar cells characteristics by tuning the density distribution of deep trapping states using Au@ DLC decorated on photoanodes. Mater. Sci. Semicond. Process. 158, 105782 (2021). https://doi.org/10.1016/j.mssp.2021.105782

    Article  Google Scholar 

  28. Be. Akhavan, S. Bakhshandeh, H. Najafi-Ashtiani, Ad C Fluit, E. Boel, Ch. Vogely, B. CH Van Der Wal, A. A Zadpoor, H. Weinans, W. E Hennink, M. M Bilek, S. A. Yavari, Direct covalent attachment of silver nanoparticles on radical-rich plasma polymer films for antibacterial applications, J. Mater. Chem. B, 6(37), 2018, 5845–5853. https://doi.org/10.1039/C8TB01363B

  29. F.R. Marciano, L.F. Bonetti, L.V. Santos, N.S. Da-Silva, E.J. Corat, V.J. Trava-Airoldi, Antibacterial activity of DLC and Ag–DLC films produced by PECVD technique. Diam. Relat. Mater. 18(5–8), 1010–1014 (2009). https://doi.org/10.1016/j.diamond.2009.02.014

    Article  ADS  Google Scholar 

  30. H. Wang, L. Wang, X. Wang, Structure characterization and antibacterial properties of Ag-DLC films fabricated by dual-targets HiPIMS. Surf. Coat. Technol. 410, 126967 (2021). https://doi.org/10.1016/j.surfcoat.2021.126967

    Article  Google Scholar 

  31. A. Ziashahabi, T. Ghodselahi, M. HeidariSaani, Comparison between stability, electronic and structural properties of noble metal nanoclusters. J. Nanopart. Res. 15(8), 1–8 (2013). https://doi.org/10.1007/s11051-013-1858-0

    Article  Google Scholar 

  32. I. Yaremchuk, As. Tamuleviciene, T. Tamulevicius, K. Šlapikas, Z. Balevicius, Si. Tamulevicius, odeling of the plasmonic properties of DLC-Ag nanocomposite film, 211(2), (2014), 329–335. https://doi.org/10.1002/pssa.201330067

  33. M. Habibi, M. Sadeghi, A. Arman, D. Sobola, C. Luna, S. Mirzaei, A. Zelati, H. D. da Fonseca Filho, Ş. Ţălu, Corrosion resistance and surface microstructure of Mg3N2/SS thin films by plasma focus instrument, Microscopy Research and Technique, (2022). https://doi.org/10.1002/jemt.24138

  34. I. Temiño, L Basiricò, I Fratelli, A Tamayo, A Ciavatti,

  35. M.M. Torrent, B. Fraboni, Morphology and mobility as tools to control and unprecedentedly enhance X-ray sensitivity in organic thin-films. Nat. Commun. 11, 2136 (2020). https://doi.org/10.1038/s41467-020-15974-7

    Article  ADS  Google Scholar 

  36. Í. C. da Costa, R. S. Matos, S. G. de Azevedo, C. A. R. Costa, E. A. Sanches, H. D. da Fonseca Filho, Microscopy-based infrared spectroscopy as a tool to evaluate the influence of essential oil on the surface of loaded bilayered-nanoparticles, Nanotechnology, 32(34), (2021), 345703. https://doi.org/10.1088/1361-6528/ac027e

  37. S. Solaymani, S. Kulesza, N. B. Nezafat, A. Shafiekhani, Ş. Ţălu, V. Dalouji, S. Rezaee, A. Boochani, Multiscale surface microtexture analysis of CuNPs@ aC: H thin films, Industrial & Engineering Chemistry Research, 59(52), (2020), 22520–22532. https://doi.org/10.1021/acs.iecr.0c04807

  38. M. Fattahi, N.B. Nezafat, Ş Ţălu, S. Solaymani, M. Ghoranneviss, S.M. Elahi, A. Shafiekhani, S. Rezaee, Topographic characterization of zirconia-based ceramics by atomic force microscopy: A case study on different laser irradiations. J. Alloy. Compd. 831, 154763 (2020). https://doi.org/10.1016/j.jallcom.2020.154763

    Article  Google Scholar 

  39. A. Das, V. Chawla, R. S. Matos, H. D. da Fonseca Filho, R. P. Yadav, Ş. Ţălu, S. Kumar, Surface microtexture and wettability analysis of quasi two-dimensional (Ti, Al) N thin films using fractal geometry, Surface and Coatings Technology, 421, (2021), 127420. https://doi.org/10.1016/j.surfcoat.2021.127420

  40. S. Ramazanov, D. Sobola, Ş Ţălu, F. Orudzev, A. Arman, P. Kaspar, R. Dallaev, G. Ramazanov, Multiferroic behavior of the functionalized surface of a flexible substrate by deposition of Bi2O3 and Fe2O3. Microsc. Res. Tech. 85(4), 1300–1310 (2022). https://doi.org/10.1002/jemt.23996

    Article  Google Scholar 

  41. Ş Ţălu, B. Astinchap, S. Abdolghaderi, A. Shafiekhani, I.A. Morozov, Multifractal investigation of Ag/DLC nanocomposite thin films. Sci. Rep. 10(1), 1–10 (2020). https://doi.org/10.1038/s41598-020-79455-z

    Article  Google Scholar 

  42. P. Kaspar, D. Sobola, R. Dallaev, S. Ramazanov, A. Nebojsa, S. Rezaee, L. Grmela, Characterization of Fe2O3 thin film on highly oriented pyrolytic graphite by AFM, Ellipsometry and XPS. Appl. Surf. Sci. 493, 673–678 (2019). https://doi.org/10.1016/j.apsusc.2019.07.058

    Article  ADS  Google Scholar 

  43. Be. Akhavan, M. Croes, St. G Wise, C. Zhai, J. Hung, C. Stewart, M. Ionescu, H. Weinans, Y. Gan, S. A. Yavari, M. MM Bilek, Radical-functionalized plasma polymers: Stable biomimetic interfaces for bone implant applications, Applied Materials Today, 16, (2019), 456–473. https://doi.org/10.1016/j.apmt.2019.07.002

  44. M. Molamohammadi, A. Arman, A. Achour, B. Astinchap, A. Ahmadpourian, Ar. Boochani, S. Naderi, A. Ahmadpourian, Microstructure and optical properties of cobalt–carbon nanocomposites prepared by RF-sputtering, Journal of Materials Science: Materials in Electronics, 26(8), (2015), 5964–5969. https://doi.org/10.1007/s10854-015-3170-5

  45. Ş Ţălu, C. Luna, A. Ahmadpourian, A. Achour, A. Arman, S. Naderi, N. Ghobadi, S. Stach, B. Safibonab, Micromorphology and fractal analysis of nickel–carbon composite thin films. J. Mater. Sci.: Mater. Electron. 27(11), 11425–11431 (2016). https://doi.org/10.1007/s10854-016-5268-9

    Article  Google Scholar 

  46. D. Nečas, P. Klapetek, Gwyddion: an open-source software for SPM data analysis. Cent. Eur. J. Phys. 10, 181–188 (2012). https://doi.org/10.2478/s11534-011-0096-2

    Article  Google Scholar 

  47. I. Horcas, R. Fernández, J.M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, A.M. Baró, Rev. Sci. Instrum. 78, 013705 (2007). https://doi.org/10.1063/1.2432410

    Article  ADS  Google Scholar 

  48. J. Schmähling, F.A. Hamprecht, Generalizing the Abbott-Firestone curve by two new surface descriptors. Wear 262, 1360–1371 (2007)

    Article  Google Scholar 

  49. Y.L. Lighvan, Morphological characteristics and Minkowski functionals of Ag-DLC thin films. Vak. Forsch. Prax. 34(3), 38–43 (2022). https://doi.org/10.1002/vipr.202200781

    Article  Google Scholar 

  50. H. Mantz, K. Jacobs, K. Mecke, Utilizing Minkowski functionals for image analysis: a marching square algorithm. J. Stat. Mech. Theory Exp. 2008, P12015 (2008)

    Article  Google Scholar 

  51. Ş Ţălu, S. Stach, A. Mahajan, D. Pathak, T. Wagner, A. Kumar, R.K. Bedi, Multifractal analysis of drop-casted copper (II) tetrasulfophthalocyanine film surfaces on the indium tin oxide substrates. Surf. Interface Anal. 46, 393–398 (2014). https://doi.org/10.1002/sia.5492

    Article  Google Scholar 

  52. A. Modabberasl, M. Sharifi, F. Shahbazi, P. Kameli, Multifractal analysis of DLC thin films deposited by pulsed laser deposition. Appl. Surf. Sci. 479, 639–645 (2019). https://doi.org/10.1016/j.apsusc.2019.02.062

    Article  ADS  Google Scholar 

  53. Z.W. Chen, J.K.L. Lai, C.H. Shek, Multifractal spectra of scanning electron microscope images of SnO2 thin films prepared by pulsed laser deposition. Phys. Lett. A. 345, 218–223 (2005). https://doi.org/10.1016/j.physleta.2005.05.104

    Article  ADS  Google Scholar 

  54. K. Ghosh, R.K. Pandey, Fractal and multifractal analysis of In-doped ZnO thin films deposited on glass, ITO, and silicon substrates. Appl. Phys. A. 125, 98 (2019). https://doi.org/10.1007/s00339-019-2398-y

    Article  ADS  Google Scholar 

  55. Ş Ţălu, S. Stach, Multifractal characterization of unworn hydrogel contact lens surfaces. Polym. Eng. Sci. 54, 1066–1080 (2014). https://doi.org/10.1002/pen.23650

    Article  Google Scholar 

  56. K.C. Vernon, A.M. Funston, C. Novo, D.E. Gómez, P. Mulvaney, T.J. Davis, Influence of Particle−Substrate Interaction on Localized Plasmon Resonances. Nano Lett. 10(6), 2080–2086 (2010). https://doi.org/10.1021/nl100423z

    Article  ADS  Google Scholar 

  57. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment, J. Phys. Chem. B,107, 3, (2003),668–677. https://doi.org/10.1021/jp026731y

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Zelati.

Ethics declarations

Conflict of interest

The author declare that he has no known competing financial interests or personal relationships that could has appeared to influence the work reported in this paper.

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The processed data required to reproduce these findings are available by e-mail to the corresponding author: azelati@birjandut.ac.ir.]

Consent to participate

The article has been written by the stated author and approve its submission.

Consent for publication

If accepted, the article will not be published elsewhere in the same form, in any language, without the written consent of the publisher.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelati, A. Multifractal and optical characterization of silver nanoparticles embedded in carbon films prepared in C2H2 + N2 gas mixtures. Eur. Phys. J. Plus 137, 1084 (2022). https://doi.org/10.1140/epjp/s13360-022-03307-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03307-0

Navigation