Skip to main content
Log in

Stabilization of traveling waves on dissipative system near subcritical bifurcation through a combination of global and local feedback

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, we develop bifurcation analysis of the traveling wave solutions of a system governed by sub-critical complex Ginzburg-Landau equation with local and global time-delay feedback. In this approach, taking into account the time-delay feedback we show how bistability, multistability and snaking behavior of traveling waves emerge in the system. We analyze analytically and numerically the stability of traveling waves depending on the feedback parameters. We investigate the system in the regime of spatiotemporal turbulence and study how a combination of global and local time-delay feedback can be used to suppress turbulence by inducing uniform oscillations. Direct numerical simulations show that a mixed local and global feedback can be efficient and also able to create stable patterns in the system. The dynamic of traveling wave in the system is studied numerically through a construction of states diagrams, a computation of the energy function and the Lyapunov exponent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analyzed in the current study are available from the corresponding author on reasonable request. This manuscript has associated data in a data repository. [Authors’ comment: All data include in this manuscript are available upon request by contacting with the corresponding author.].

References

  1. M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)

    Article  ADS  Google Scholar 

  2. A.S. Mikhailov, Foundations of Synergetics I (Distributed Active Systems, Springer, Berlin, 1994)

    Book  Google Scholar 

  3. E. Kengne, Eur. Phys. J. Plus 136, 266 (2021)

    Article  Google Scholar 

  4. I.S. Aranson, L. Kramer, Rev. Mod. Phys. 74, 99 (2002)

    Article  ADS  Google Scholar 

  5. P.H. Grelu, N. Akhmediev, Opt. Express 12, 3184 (2004)

    Article  ADS  Google Scholar 

  6. M. Matsumoto, H. Ikeda, T. Uda, A. Hasegawa, IEEE/OSA J. Lihgtwave Technology 13, 658 (1995)

    Article  ADS  Google Scholar 

  7. U. Staliunas, V.J. Sanchez-Morcillo, Transvers Patterns in Nonlniear Optical Resonators, Springer Tracts in Modern Physics, vol. 183 (Springer-Verlag, Berlin, Heidelberg, 2003), p.737

    Google Scholar 

  8. M. S. Osman, Behzad Ghanbari, J. A. T. Machado, Eur. Phys. J. Plus 134, 20 (2019)

  9. I. M. Uzunov, 1. Zhivko, D. Georgiev, T. N. Arabadzhiev, Phys. Rev. E 97, 052215 (2018)

  10. G. Kuetche Saadeu, L. Nana, Nonlinear Dyn. 105, 2559 (2021)

  11. J.B.Gonpe Tafo, L. Nana, T.C Kofane, Eur. Phys. J. Plus. 127, 75 (2012)

  12. T. Kapitula, Nonlinearity 9, 669 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  13. K. Hosseini, M. Mirzazadeh, D. Baleanu, N. Raza, C. Park, A. Ahmadian, S. Salahshour, Eur. Phys. J. Plus 136, 709 (2021)

    Article  Google Scholar 

  14. A.K. Jiotsa, T.C. Kofane, J. Phys. Soc. Jpn. 72, 1800 (2003)

    Article  ADS  Google Scholar 

  15. A.A. Elmandouh, Eur. Phys. J. Plus 135, 648 (2020)

    Article  Google Scholar 

  16. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984)

    Book  Google Scholar 

  17. J.B. Gonpe Tafo, L. Nana, T. C. Kofane, Eur. Phys. J. Plus 126, 105 (2011)

  18. E. Scholl, H.G. Schuster (eds.), Handbook of Chaos Control (Wiley-VCH, Weinheim, 2007)

  19. E. Ott, C. Grebogi, J.A. Yorke, Phys. Rev. Lett. 64, 1196 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  20. V. Petrov, V. Gaspar, J. Masere, K. Showalter, Nature 361, 240 (1993)

    Article  ADS  Google Scholar 

  21. J.B. Gonpe Tafo, L. Nana, T.C Kofane , Phys. Rev. E. 96, 022205 (2017)

  22. K. Pyragas, Phys. Lett. A 170, 421 (1992)

    Article  ADS  Google Scholar 

  23. J.E.S. Socolar, D.W. Sukow, D.J. Gauthier, Phys. Rev. E 50, 32453 (1994)

    Article  Google Scholar 

  24. F. Tchakounte, V. Bami Nana, L. Nana, Eur.Phys. J. Plus 136, 94(2021)

  25. Y.N. Kyrychko, K.B. Blyuss, J. Hogan, E. Scholl, Chaos 19, 043126 (2009)

    Article  ADS  Google Scholar 

  26. M. Stich, A.C. Casal, J.I. Di-az, Phys. Rev. E 76, 036209 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  27. L.E. Howle, Phys. Fluids 9, 1861 (1997)

    Article  ADS  Google Scholar 

  28. A.C. Or, R.E. Kelly, J. Fluid Mech. 440, 27 (2001)

    Article  ADS  Google Scholar 

  29. N. Garnier, R.O. Grigoriev, M.F. Schatz, Phys. Rev. Lett. 91, 054501 (2003)

    Article  ADS  Google Scholar 

  30. A.S. Mikhailov, K. Showalter, Phys. Rep. 425, 79 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  31. A.A. Nepomnyashchy, A.A. Golovin, V. Gubareva, V. Panfilov, Physica D 199, 49 (2004)

    Article  Google Scholar 

  32. D. Battogtokh, A. Mikhailov, Physica D 90, 84 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  33. C. Beta, A.S. Mikhailov, Physica D 199, 173184 (2004)

    Article  Google Scholar 

  34. J.B . Gonpe Tafo, L. Nana, T. C. Kofane, Phys. Rev. E 88, 032911 (2013)

  35. D. Puzyrev, S. Yanchuk, A.G. Vladimirov, S.V. Gurevich, SIAM, J. Appl. Dyn. Syst. 13, 986 (2014)

  36. M. Stich, A. Casal, C. Beta, Phys. Rev. E 88, 042910 (2013)

    Article  ADS  Google Scholar 

  37. M. Stich, C. Beta, Physica D. 239, 1681 (2010)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the anonymous referees and the editor for their helpful comments, recommendations and discussions.

Author information

Authors and Affiliations

Authors

Contributions

L. N. conceived the idea of the present work. N. C. T. M. and F. W. T. have performed the analytical and numerical computations. V. B. N. refined the numerical computations. N. C. T. M., F. W. T. and L. N. conducted the interpretation of the results. N. C. T. M. and L. N. wrote an initial draft. F. W. T. and L. N. finalized the project.

Corresponding author

Correspondence to Laurent Nana.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezamo, N.C.T., Nana, V.B., Tchuimmo, F.W. et al. Stabilization of traveling waves on dissipative system near subcritical bifurcation through a combination of global and local feedback. Eur. Phys. J. Plus 137, 1139 (2022). https://doi.org/10.1140/epjp/s13360-022-03352-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03352-9

Navigation