Skip to main content
Log in

Electrical and dielectric properties of the La0.4Bi0.3Sr0.2Ba0.1MnO3 ceramic synthesized by sol–gel method

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We investigate the electrical and dielectric properties of the La0.4Bi0.3Sr0.2Ba0.1MnO3 manganite that is prepared by the sol–gel method. Over the explored temperature interval, our compound reveals a semiconductor behavior. At elevated temperatures, the transport properties are explained by the activation of the small polaron hopping mechanism. The variable-range hopping process dominates the electrical properties at low temperatures. In the intermediate temperature, the Shklovskii–Efros variable-range hopping model describes well the transport properties. The complex impedance and modulus results reveal the existence of non-Debye relaxation phenomena. The scaling behavior of the Z″ spectra indicates that the relaxation time distributions are temperature independent. The dielectric permittivity behavior is related to the presence of the space charge polarization effects. Thus, Maxwell–Wagner’s model is adopted to analyze the dielectric permittivity response of the material. The application of the modified Curie–Weiss law confirms the relaxor dielectric behavior of the material. The presence of confined charge carriers at the grain boundary region is confirmed by analyzing the temperature dependence of the blocking factor.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data will be made available on reasonable request.]

References

  1. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, Insulator-metal transition and giant magnetoresistance in La1−xSrxMnO3. Phys. Rev. B 51, 14109 (1995)

    Article  ADS  Google Scholar 

  2. Z. Luo, J. Gao, Rectifying characteristics and magnetoresistance in La0.9Sr0.1MnO3/Nb-doped SrTiO3 heterojunctions. Mater. Sci. Eng. B 144, 112 (2007)

    Article  Google Scholar 

  3. H. Baaziz, A. Tozri, E. Dhahri, E.K. Hlil, Effect of particle size reduction on the structural, magnetic properties and the spin excitations in ferromagnetic insulator La0.9Sr0.1MnO3 nanoparticles. Ceram. Int 41, 2962 (2015)

    Article  Google Scholar 

  4. H.E. Sekrafi, A.B.J. Kharrat, M.A. Wederni, N. Chniba-Boudjada, K. Khirouni, W. Boujelben, Impact of low titanium concentration on the structural, electrical and dielectric properties of Pr0.75Bi0.05Sr0.1Ba0.1Mn1-xTixO3 (x = 0, 0.04) compounds. J Mater Sci-Mater Electron 30, 891 (2019)

    Article  Google Scholar 

  5. M.D. Daivajna, A. Rao, G.S. Okram, Electrical, thermal and magnetic properties of Bi doped La0.7−xBixSr0.3MnO3 manganites. J. Alloys Compd. 617, 351 (2014)

    Article  Google Scholar 

  6. Y. Moualhi, M. Smari, H. Rahmouni, K. Khirouni, Fundamental behaviors, and contributions of hopping and tunneling mechanisms to the transport characteristics of the La0.5Ca0.5MnO3 phase separated perovskite. ACS Appl. Electron. Mater. 4, 4893 (2022)

    Article  Google Scholar 

  7. K.R. Nandan, A. Rubankumar, S. Kalainathan, Structural, dielectric and impedance studies of polycrystalline La0.6Gd0.2Ca0.2MnO3. AIP Conf. Proc. 1731, 050127 (2016)

    Article  Google Scholar 

  8. Y. Moualhi, M. Smari, H. Rahmouni, K. Khirouni, E. Dhahri, Superlinear dependence of the conductivity, double/single Jonscher variations and the contribution of various conduction mechanisms in transport properties of La0.5Ca0.2Ag0.3MnO3 manganite. J. Alloys Comp. 898, 162866 (2022)

    Article  Google Scholar 

  9. C. Zener, Interaction between the -shells in the transition metals. II. ferromagnetic compounds of manganes with perovskite structure. Phys. Rev. 82, 403 (1951)

    Article  ADS  Google Scholar 

  10. A.J. Millis, P.B. Littlewood, B.I. Shraiman, Double exchange alone does not explain the resistivity of La1-xSrxMnO3. Phys. Rev. Lett. 74, 5144 (1995)

    Article  ADS  Google Scholar 

  11. E. Dagotto, T. Hotta, A. Moreo, Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 344, 1 (2001)

    Article  ADS  Google Scholar 

  12. A.I. Kurbakov, V.A. Ryzhov, V.V. Runov, E.O. Bykov, I.I. Larionov, V.V. Deriglazov, A. Maignan, Study of phase separation phenomena in half-doped manganites with isovalent substitution of rare-earth cations on example of Sm0.32Pr0.18Sr0.5MnO3. Phys. Rev. B 100, 184424 (2019)

    Article  ADS  Google Scholar 

  13. D. Liu, N. Wang, G. Wang, Z. Shao, X. Zhu, C. Zhang, H. Cheng, J. Alloys Compd. 580, 354 (2013)

    Article  Google Scholar 

  14. L. Wu, Z. Jiang, S. Wang, C. Xia, Int. J. Hydrog. Energy 38, 2398 (2013)

    Article  Google Scholar 

  15. S. Liu, B. Guillet, A. Aryan, C. Fur, J.-M. Routoure, F. Lemarie, D.G. Schlom, L. Mechin, Microelectron. Eng. 111, 101 (2013)

    Article  Google Scholar 

  16. A.B.J. Kharrat, S. Moussa, N. Moutiaa, K. Khirouni, W. Boujelben, Structural, electrical and dielectric properties of Bi-doped Pr0.8-xBixSr0.2MnO3 manganite oxides prepared by sol-gel process. J. Alloys Compd. 724, 399 (2017)

    Google Scholar 

  17. A.M. Ahmed, Bi-doping effects on the transport properties in La0.7−xBixSr0.3MnOy. Phys. B 352, 336 (2004)

    Article  ADS  Google Scholar 

  18. E. Rezlescu, C. Doroftei, P.D. Popa, N. Rezescu, J. Magn. Magn. Mater 320, 796 (2008)

    Article  ADS  Google Scholar 

  19. L. Righi, J. Gutierrez, J.M. Barandiaran, J. Phys.: Condens. Matter. 11, 2831 (1999)

    ADS  Google Scholar 

  20. S.V. Trukhanov, Magnetic and magnetotransport properties of La1−xBaxMnO3-x/2 perovskite manganites. J. Mater. Chem. 13, 347 (2003)

    Article  Google Scholar 

  21. I. Mansuri, D. Varshney, Structure and electrical resistivity of La1−xBaxMnO3 (0.25 ≤ x ≤0.35) perovskites. J. Alloys. Compd. 513, 256 (2012)

    Article  Google Scholar 

  22. H. Salhi, A. Mleiki, R. M’nassri, H. Rahmouni, L. Ajili, K. Khirouni, Study of electrical properties and conduction mechanisms in La0.4Bi0.3Sr0.2Ba0.1MnO3 Ceramic elaborated by sol gel method. J. Alloys Compd. 928, 167132 (2022)

    Article  Google Scholar 

  23. N.F. Mott, The origin of some ideas on non-crystalline materials. J. Non-Cryst. Solids 28, 147 (1978)

    Article  ADS  Google Scholar 

  24. N.F. Mott, Polarons. Mater. Res. Bull. 13, 1389 (1978)

    Article  Google Scholar 

  25. N.F. Mott, Conduction in glasses containing transition metal ions. J. Non-Cryst. Solids 1, 1 (1968)

    Article  ADS  Google Scholar 

  26. N.F. Mott, Conduction in non-crystalline materials. Philos. Mag. 19, 835 (1969)

    Article  ADS  Google Scholar 

  27. N.F. Mott, Closing address. J. Non-Cryst. Solids 35, 1321 (1980)

    Article  ADS  Google Scholar 

  28. Y. Moualhi, H. Rahmouni, K. Khirouni, Dynamics of charge carriers in doped manganite based on conductivity measurements and theoretical models. Phys. B 606, 413129 (2021)

    Article  Google Scholar 

  29. R. Laiho, K.G. Lisunov, E. Lähderanta, V.N. Stamov, V.S. Zakhvalinskii, Variable-range hopping conductivity in La1−xCaxMnO3. J. Phys. Condens. Matter 13, 1246 (2001)

    Article  Google Scholar 

  30. A.L. Efros, B.I. Shklovskii, Coulomb interaction in disordered systems with localized electronic states. Mod. Probl. Condens. Matter Sci. 10, 482 (1985)

    Google Scholar 

  31. A. Tripathy, S.N. Das, S.K. Pradhan, S. Bhuyan, R.N.P. Choudhary, Temperature and frequency dependent dielectric and impedance characteristics of double perovskite Bi 2 MnCoO6 electronic material. J. Mater. Sci. Mater. Electron. 29, 4776 (2018)

    Article  Google Scholar 

  32. S. Selvasekarapandian, M. Vijaykumar, The ac impedance spectroscopy studies on LiDyO2. J. Mater. Chem. Phys. 80, 33 (2003)

    Article  Google Scholar 

  33. Y. Moualhi, R. M’nassri, M.M. Nofal, H. Rahmouni, A. Selmi, M. Gassoumi, N. Chniba- Boudjada, K. Khirouni, A. Cheikrouhou, Influence of Fe doping on physical properties of charge ordered praseodymium-calcium-manganite material. Eur. Phys. J. Plus 135, 809 (2020)

    Article  Google Scholar 

  34. B. Panda, K.L. Routray, D. Behera, Studies on conduction mechanism and dielectric properties of the nano-sized La0.7Ca0.3MnO3 (LCMO) grains in the paramagnetic state. Phys. B 583, 411967 (2020)

    Article  Google Scholar 

  35. S. Ayachi, Y. Moualhi, H. Rahmouni, M. Gassoumi, K. Khirouni, Chromium concentration effects on transport and dielectric behavior of lanthanum-gallium ferrite. Phys. B: Phys. Condens. Matter 591, 412244 (2020)

    Article  Google Scholar 

  36. S. El Kossi, F.I.H. Rhouma, J. Dhahri, K. Khirouni, Structural and electric properties of La0.7Sr0.25Na0.05Mn0.9Ti0.1O3 ceramics. Phys. B 440, 118 (2014)

    Article  ADS  Google Scholar 

  37. S. Hébert, B. Wang, A. Maignan, C. Martin, R. Retoux, B. Raveau, Vacancies at Mn-site in Mn3+ rich manganites: a route to ferromagnetism but not to metallicity. Solid State Commun. 123, 311 (2002)

    Article  ADS  Google Scholar 

  38. S. Kumari, R. Rai, P. Kumar, O.P. Thakur, R. Chatterjee, The effect of Eu dopant on the structural, dielectric and impedance properties of PrMnO3 manganite ceramics. J. Phys. Chem. Solids 160, 110365 (2022)

    Article  Google Scholar 

  39. M. Nadeem, M.J. Akhtar, Melting/collapse of charge orbital ordering and spread of relaxation time with frequency in La0.50Ca0.50MnO3+δ by impedance spectroscopy. J. Appl. Phys. 104, 103713 (2008)

    Article  ADS  Google Scholar 

  40. M. Younas, M. Nadeem, M. Atif, R. Grossinger, Metal-semiconductor transition in NiFe2O4 nanoparticles due to reverse cationic distribution by impedance spectroscopy. J. Appl. Phys. 109, 093704 (2010)

    Article  ADS  Google Scholar 

  41. S. Hcini, S. Khadhraoui, A. Triki, S. Zemni, M. Boudard, M. Oumezzine, Impedance spectroscopy properties of Pr0.67A0.33MnO3 (A= Ba or Sr) perovskites. J. Supercond. Nov. Magn. 27, 201 (2014)

    Article  Google Scholar 

  42. R. Tang, C. Jiang, W. Qian, J. Jian, X. Zhang, H. Wang, H. Yang, Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41hexaferrite. Sci. Rep. 5, 13645 (2015)

    Article  ADS  Google Scholar 

  43. Y. Moualhi, R. M’nassri, M.M. Nofal, H. Rahmouni, A. Selmi, M. Gassoumi, N. Chniba-Boudjada, K. Khirouni, A. Cheikhrouhou, Magnetic properties and impedance spectroscopic analysis in Pr0.7Ca0.3Mn0.95Fe0.05O3 perovskite ceramic. J. Mater. Sci.: Mater. Electron. 31, 21046–21058 (2020)

    Google Scholar 

  44. J.H. Joshi, D.K. Kanchan, M.J. Joshi, H.O. Jethva, K.D. Parikh, Dielectric relaxation, complex impedance and modulus spectroscopic studies of mix phase rod like cobalt sulfide nanoparticles. Mater. Res. Bull. 93, 63 (2017)

    Article  Google Scholar 

  45. E.J. Abram, D.C. Sinclair, A.R. West, J. Electroceram 10, 177 (2003)

    Article  Google Scholar 

  46. D.D. Macdonald, Electrochem. Acta 51, 1376 (2006)

    Article  Google Scholar 

  47. D.K. Pradhan, B.K. Samanthary, R.N.P. Choudhary, A.K. Thakur, Complex impedance studies on a layered perovskite ceramic oxide—NaNdTiO4. Mater. Sci. Eng. B 116, 7 (2005)

    Article  Google Scholar 

  48. J. Plocharski, W. Wieczorek, Impedance spectroscopy and phase structure of PEO-NaI complexes. Solid State Ion. 979, 28 (1988)

    Google Scholar 

  49. S.A. Hashmi, A.K. Thakur, H.M. Upadhaya, Experimental studies on polyethylene oxide–NaClO4 basedcomposite polymer electrolytes dispersed with Na2SiO3. Eur. Polym. J. 34, 1277 (1998)

    Article  Google Scholar 

  50. F.B. Abdallah, A. Benali, S. Azizi, M. Triki, E. Dhahri, M.P.F. Graça, M.A. Valente, Strontium-substituted La0.75Ba0.25xSrxFeO3 (x= 0.05, 0.10 and 0.15) perovskite: dielectric and electrical studies. J. Mater. Sci. Mater. 30, 8470 (2019)

    Google Scholar 

  51. M. Smari, H. Rahmouni, N. Elghoul, I. Walha, E. Dhahri, K. Khirouni, Electric–dielectric properties and complex impedance analysis of La0.5Ca0.5xAgxMnO3 manganites. RSC Adv. 5, 2184 (2014)

    Google Scholar 

  52. L. Dessemond, R. Muccillo, M. Hénault, M. Kleitz, Electric conduction-blocking effects of voids and second phases in stabilized zirconia. Appl. Phys. A 57, 57 (1993)

    Article  ADS  Google Scholar 

  53. Y. Moualhi, A. Mleiki, H. Rahmouni, K. Khirouni, Investigation of the dielectric response and the transport properties of samarium and strontium-based manganite. Eur. Phys. J. Plus 137, 406 (2022)

    Article  Google Scholar 

  54. J.S. Kim, I.W. Kim, J. Electroceram. 16, 377 (2006)

    Google Scholar 

  55. A.K. Zad, J. Zaini, P.I. Petra, L.C. Ming, S.G. Eriksson, Effect of Nd-doping on structural, thermal and electrochemical properties of LaFe0.5Cr0.5O3 perovskites. Ceram. Int. 42, 4532 (2016)

    Article  Google Scholar 

  56. S. Bouzidi, A.B. Hassen, J. Dhahri, K. Khirouni, Structural and dielectric properties of BaTi0.5 (Co0.33 Mo0.17) O3 perovskite ceramic. J. Alloys Compd. 781, 944 (2019)

    Article  Google Scholar 

  57. M. Bourguiba, Z. Raddaoui, A. Dhahri, M. Chafra, J. Dhahri, M.A. Garcia, Investigation of the conduction mechanism, high dielectric constant, and non-Debye-type relaxor in La0.67Ba0.25 Ca0.08 MnO3 manganite. J. Mater. Sci. Mater. Electron. 31, 11818 (2020)

    Article  Google Scholar 

  58. A.O. Keelani, S. Husain, W. Khan, Temperature dependent dielectric properties and ac conductivity of GdFe1−xMnxO3 (0≤ x ≤ 0.3) perovskites. J. Mater. Sci. Mater. Electron. 30, 20131 (2019)

    Article  Google Scholar 

  59. A. Dhahri, F.I.H. Rhouma, J. Dhahri, E. Dhahri, M.A. Valente, Structural and electrical characteristics of rare earth simple perovskite oxide La0.57Nd0.1Pb0.33Mn0.8Ti0.2O3. Solid State Commun. 151, 742 (2011)

    Article  ADS  Google Scholar 

  60. K. Parida, S.K. Dehury, R.N.P. Choudhary, Structural, electrical and magneto-electric characteristics of BiMgFeCeO6 ceramics. Phys. Lett. A 380, 4091 (2016)

    Article  ADS  Google Scholar 

  61. F.B. Abdallah, A. Benali, M. Triki, E. Dhahri, M.P.F. Graca, M.A. Valente, Effect of annealing temperature on structural, morphology and dielectric properties of La0.75Ba0.25FeO3 perovskite. Superlattices Microstruct. 117, 270 (2018)

    Article  ADS  Google Scholar 

  62. M. Shang, P. Ren, Y. Wan, X. Lu, Tailoring Curie temperature and dielectric properties by changing the doping sites of Y ions in (Ba, Ca)(Zr, Ti)O3 ceramics. J. Eur. Ceram. Soc. (2023). https://doi.org/10.1016/j.jeurceramsoc.2023.01.033

    Article  Google Scholar 

  63. V. Brizé, G. Gruener, J. Wolfman, K. Fatyeyera, M. Tabellout, M. Gevais, F. Gevais, Mater. Sci. Eng. B 129, 135 (2006)

    Article  Google Scholar 

  64. T. Jadli, Y. Moualhi, A. Mleiki, H. Rahmouni, K. Khirouni, A. Cheikhrouhou, Electrical and dielectric properties of Sm0.55Sr0.45MnO3 compound. J. Solid State Chem. 302, 122378 (2021)

    Article  Google Scholar 

  65. T. Kar, R.N.P. Choudhary, Structural, dielectric and electrical conducting properties of CsB′ B′′ O6 (B′= Nb, Ta; B′′= W, Mo) ceramics. Mater. Sci. Eng. B 90, 233 (2002)

    Article  Google Scholar 

  66. M.B. Mohamed, K. El-Sayed, Microstructure, magnetic and electric properties of BaTiO3–Ni0.5Zn0.5Fe1.5Cr0.5O4 nanocomposite. Mater. Res. Bull. 48, 1778 (2013)

    Article  Google Scholar 

  67. V.S. Sawant, S.S. Shinde, R.J. Deokate, C.H. Bhosale, B.K. Chougule, K.Y. Rajpure, Appl. Surf. Sci. 255, 6678 (2009)

    Article  ADS  Google Scholar 

  68. K.J. Hamam, F. Salman, Dielectric constant and electrical study of solid-state electrolyte lithium phosphate glasses. Appl. Phys. A 125, 621 (2019)

    Article  ADS  Google Scholar 

  69. A.V. Ramana Reddy, G. Ranga Mohan, D. Ravineder, High-frequency dielectric behaviour of polycrystalline zinc substituted cobalt ferrites. J. Mat. Sci. 34, 3169 (1999)

    Article  ADS  Google Scholar 

  70. J. Che, H. Zheng, Z. Lu et al., Bimetallic sulfides embedded into porous carbon composites with tunable magneto-dielectric properties for lightweight biomass-reinforced microwave absorber [J]. Ceram. Int. (2023). https://doi.org/10.1016/j.ceramint.2023.05.254

    Article  Google Scholar 

  71. J. Chen, L. Yi, X. Jie et al., Enhanced microwave absorption properties of biomass-derived carbon decorated with transition metal alloy at improved graphitization degree. J. Alloy. Compd. 890, 161834 (2022)

    Article  Google Scholar 

  72. L. Yi, Q. Jingnan, L. Linlin, X. Jie, S. Xiaolei, Enhanced microwave absorption property of silver decorated biomass ordered porous carbon composite materials with frequency selective surface incorporation. Int. J. Miner. Metall. Mater. 30, 525 (2023)

    Article  Google Scholar 

  73. J.C. Maxwell, Electricity and Magnetism, vol. 1 (Clarendon Press, Oxford, 1892)

    Google Scholar 

  74. J. Wang, J. Bai, Z. Han, K. Jin, C. Chen, W. Zhai, Temperature dependent magnetoelectric coupling in BaTiO3/La0.67Sr0.33MnO3 heterojunction. J. Phys. D: App. Phys. 51, 135305 (2018)

    Article  ADS  Google Scholar 

  75. V. Gupta, B. Raina, K.K. Bamzai, Preparation, structural, spectroscopic and magnetoelectric properties of multiferroic cadmium doped neodymium manganite. J. Mat. Sci: Mat. Electron 29, 8947 (2018)

    Google Scholar 

  76. H. Rahmouni, M. Smari, B. Cherif, E. Dhahri, K. Khirouni, Conduction mechanism, impedance spectroscopic investigation and dielectric behavior of La0.5Ca0.5xAgxMnO3 manganites with compositions below the concentration limit of silver solubility in perovskites (0 ≤ x ≤ 0.2). Dalton Trans. 44, 10457 (2015)

    Article  Google Scholar 

  77. L. Chauhan, A.K. Shukla, K. Sreenivas, Dielectric and magnetic properties of Nickel ferrite ceramics using crystalline powders derived from DL alanine fuel in sol–gel autocombustion. Ceram. Int. 4, 8341 (2015)

    Article  Google Scholar 

  78. V. Kumar, S. Chahal, D. Singh, A. Kumar, P. Kumar, K. Asokan, Annealing effect on the structural and dielectric properties of hematite nanoparticles. AIP Conf. Proc. 1953, 030245 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Salhi.

Ethics declarations

Conflicts of interest

The authors confirm that there are no known conflicts of interest associated with this publication and there has been no significant financial support for this work that could have influenced its outcome.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salhi, H., Moualhi, Y., Mleiki, A. et al. Electrical and dielectric properties of the La0.4Bi0.3Sr0.2Ba0.1MnO3 ceramic synthesized by sol–gel method. Eur. Phys. J. Plus 138, 682 (2023). https://doi.org/10.1140/epjp/s13360-023-04298-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04298-2

Navigation