Skip to main content
Log in

Horizontal stratification of fluids and the behavior of long waves

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This study employs contemporary and precise computational techniques to obtain innovative solitary wave solutions for the (3 + 1)-dimensional Kadomtsev-Petviashvili (\({\mathcal{K}\mathcal{P}}\)) equation, which characterizes the behavior of long waves with small amplitudes compared to wavelengths in horizontally stratified fluids. The model accounts for nonlinearity, dispersion, and dissipation, all of which significantly influence wave propagation. The nonlinearity results in wave interactions and soliton formation, dispersion causes wave spreading over time, while dissipation represents energy loss. The generalized exponential function (\({\mathcal {GEF}}\)) method is utilized to construct solitary wave solutions, which are analyzed for their amplitude, width, and wave speed. The contribution of this study lies in enhancing the comprehension of physical phenomena dynamics, including surface waves in deep water, Langmuir waves in plasma physics, and electromagnetic waves in nonlinear optics. Comparisons with prior studies indicate the proposed technique’s reliability and accuracy in obtaining solitary wave solutions for the \({\mathcal{K}\mathcal{P}}\) equation. Therefore, this study provides valuable insights into nonlinear science and has the potential to inform practical applications across various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Aavailability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request].

References

  1. M.M.A. Khater, S.H. Alfalqi, J.F. Alzaidi, R.A.M. Attia, Novel soliton wave solutions of a special model of the nonlinear Schrödinger equations with mixed derivatives. Results Phys. 47, 106367 (2023). https://doi.org/10.1016/j.rinp.2023.106367

    Article  Google Scholar 

  2. M.M.A. Khater, De Broglie waves and nuclear element interaction. Abundant waves structures of the nonlinear fractional Phi-four equation. Chaos Solitons Fractals 163, 112549 (2022). https://doi.org/10.1016/j.chaos.2022.112549

    Article  MathSciNet  MATH  Google Scholar 

  3. M.M.A. Khater, Analytical and numerical-simulation studies on a combined mKdV–KdV system in the plasma and solid physics. Eur. Phys. J. Plus 137(9), 1078 (2022). https://doi.org/10.1140/epjp/s13360-022-03285-3

    Article  Google Scholar 

  4. M.M.A. Khater, Nonlinear biological population model; computational and numerical investigations. Chaos, Solitons Fractals 162, 112388 (2022). https://doi.org/10.1016/j.chaos.2022.112388

    Article  MathSciNet  MATH  Google Scholar 

  5. M.M.A. Khater, Novel computational simulation of the propagation of pulses in optical fibers regarding the dispersion effect. Int. J. Mod. Phys. B 37(9), 2350083 (2023). https://doi.org/10.1142/S0217979223500832

    Article  ADS  MathSciNet  Google Scholar 

  6. M.M.A. Khater, In surface tension; gravity-capillary, magneto-acoustic, and shallow water waves’ propagation. Eur. Phys. J. Plus 138(4), 320 (2023). https://doi.org/10.1140/epjp/s13360-023-03902-9

    Article  Google Scholar 

  7. M.M.A. Khater, A hybrid analytical and numerical analysis of ultra-short pulse phase shifts. Chaos, Solitons Fractals 169, 113232 (2023). https://doi.org/10.1016/j.chaos.2023.113232

    Article  MathSciNet  Google Scholar 

  8. M.M.A. Khater, Nonparaxial pulse propagation in a planar waveguide with Kerr-like and quintic nonlinearities; computational simulations. Chaos, Solitons Fractals 157, 111970 (2022). https://doi.org/10.1016/j.chaos.2022.111970

    Article  MathSciNet  MATH  Google Scholar 

  9. M.M.A. Khater, Lax representation and bi-Hamiltonian structure of nonlinear Qiao model. Mod. Phys. Lett. B 36(7), 2150614 (2022). https://doi.org/10.1142/S0217984921506144

    Article  ADS  MathSciNet  Google Scholar 

  10. M.M.A. Khater, Numerical simulations of Zakharov’s (ZK) non-dimensional equation arising in Langmuir and ion-acoustic waves. Mod. Phys. Lett. B 35(31), 2150480–86 (2021). https://doi.org/10.1142/S0217984921504807

    Article  ADS  MathSciNet  Google Scholar 

  11. C. Yue, M. Peng, M. Higazy, M.M.A. Khater, Modeling of plasma wave propagation and crystal lattice theory based on computational simulations. AIP Adv. 13(4), 045223 (2023). https://doi.org/10.1063/5.0146462

    Article  ADS  Google Scholar 

  12. M.M.A. Khater, Analytical simulations of the Fokas system; extension (2 + 1)-dimensional nonlinear Schrödinger equation. Int. J. Mod. Phys. B 35(28), 2150286–86 (2021). https://doi.org/10.1142/S0217979221502866

    Article  ADS  MATH  Google Scholar 

  13. M.M.A. Khater, Abundant wave solutions of the perturbed Gerdjikov–Ivanov equation in telecommunication industry. Mod. Phys. Lett. B 35(26), 2150456 (2021). https://doi.org/10.1142/S021798492150456X

    Article  ADS  MathSciNet  Google Scholar 

  14. C. Yue, H.M. Abu-Donia, H.A. Atia, O.M.A. Khater, M.S. Bakry, E. Safaa, M.M.A. Khater, Weakly compatible fixed point theorem in intuitionistic fuzzy metric spaces. AIP Adv. 13(4), 045113 (2023). https://doi.org/10.1063/5.0147488

    Article  ADS  Google Scholar 

  15. M.M.A. Khater, Diverse bistable dark novel explicit wave solutions of cubic-quintic nonlinear Helmholtz model. Mod. Phys. Lett. B 35(26), 2150441 (2021). https://doi.org/10.1142/S0217984921504418

    Article  ADS  MathSciNet  Google Scholar 

  16. M.M.A. Khater, New traveling solutions of the fractional nonlinear KdV and ZKBBM equations with fractional operator. Int. J. Mod. Phys. B 35(22), 2150232 (2021). https://doi.org/10.1142/S0217979221502325

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. M.M.A. Khater, S.H. Alfalqi, J.F. Alzaidi, R.A.M. Attia, Analytically and numerically, dispersive, weakly nonlinear wave packets are presented in a Quasi-monochromatic medium. Results Phys. 46, 106312 (2023). https://doi.org/10.1016/j.rinp.2023.106312

    Article  Google Scholar 

  18. M.M.A. Khater, Abundant breather and semi-analytical investigation: on high-frequency waves’ dynamics in the relaxation medium. Mod. Phys. Lett. B 35(22), 2150372 (2021). https://doi.org/10.1142/S0217984921503723

    Article  ADS  MathSciNet  Google Scholar 

  19. M.M.A. Khater, Diverse solitary and Jacobian solutions in a continually laminated fluid with respect to shear flows through the Ostrovsky equation. Mod. Phys. Lett. B 35(13), 2150220 (2021). https://doi.org/10.1142/S0217984921502201

    Article  ADS  MathSciNet  Google Scholar 

  20. M.M.A. Khater, Prorogation of waves in shallow water through unidirectional Dullin–Gottwald–Holm model; computational simulations. Int. J. Mod. Phys. B 37(8), 2350071 (2023). https://doi.org/10.1142/S0217979223500716

    Article  ADS  Google Scholar 

  21. M.M.A. Khater, Long waves with a small amplitude on the surface of the water behave dynamically in nonlinear lattices on a non-dimensional grid. Int. J. Mod. Phys. B 37(19), 2350188 (2023). https://doi.org/10.1142/S0217979223501886

    Article  ADS  Google Scholar 

  22. M.M.A. Khater, Abundant and accurate computational wave structures of the nonlinear fractional biological population model. Int. J. Mod. Phys. B 37(18), 2350176 (2023). https://doi.org/10.1142/S021797922350176X

    Article  ADS  Google Scholar 

  23. M.M.A. Khater, S.H. Alfalqi, J.F. Alzaidi, R.A.M. Attia, Plenty of accurate novel solitary wave solutions of the fractional Chaffee–Infante equation. Results Phys. 48, 106400 (2023). https://doi.org/10.1016/j.rinp.2023.106400

    Article  Google Scholar 

  24. M.M.A. Khater, In solid physics equations, accurate and novel soliton wave structures for heating a single crystal of sodium fluoride. Int. J. Mod. Phys. B 37(7), 2350068–139 (2023). https://doi.org/10.1142/S0217979223500686

    Article  ADS  Google Scholar 

  25. C. Yue, M. Peng, M. Higazy, M.M.A. Khater, Exploring the wave solutions of a nonlinear non-local fractional model for ocean waves. AIP Adv. 13(5), 055121 (2023). https://doi.org/10.1063/5.0153984

    Article  ADS  Google Scholar 

  26. M.M.A. Khater, Nonlinear elastic circular rod with lateral inertia and finite radius: dynamical attributive of longitudinal oscillation. Int. J. Mod. Phys. B 37(6), 2350052 (2023). https://doi.org/10.1142/S0217979223500522

    Article  ADS  Google Scholar 

  27. C. Yue, M. Higazy, O.M.A. Khater, M.M.A. Khater, Computational and numerical simulations of the wave propagation in nonlinear media with dispersion processes. AIP Adv. 13(3), 035232 (2023). https://doi.org/10.1063/5.0143256

    Article  ADS  Google Scholar 

  28. M.M.A. Khater, X. Zhang, R.A.M. Attia, Accurate computational simulations of perturbed Chen–Lee–Liu equation. Results Phys. 45, 106227 (2023). https://doi.org/10.1016/j.rinp.2023.106227

    Article  Google Scholar 

  29. M.M.A. Khater, Computational and numerical wave solutions of the Caudrey–Dodd–Gibbon equation. Heliyon 9, e13511 (2023). https://doi.org/10.1016/j.heliyon.2023.e13511

    Article  Google Scholar 

  30. M.M.A. Khater, Multi-vector with nonlocal and non-singular kernel ultrashort optical solitons pulses waves in birefringent fibers. Chaos, Solitons Fractals 167, 113098 (2023). https://doi.org/10.1016/j.chaos.2022.113098

    Article  MathSciNet  Google Scholar 

  31. M.M.A. Khater, J.F. Alzaidi, A.K. Hussain, Abundant solitary and semi-analytical wave solutions of nonlinear shallow water wave regime model, in American Institute of Physics Conference Series, Vol. 2414 of American Institute of Physics Conference Series, p. 040098 (2023). https://doi.org/10.1063/5.0114938

  32. M.M.A. Khater, Physics of crystal lattices and plasma; analytical and numerical simulations of the Gilson–Pickering equation. Results Phys. 44, 106193 (2023). https://doi.org/10.1016/j.rinp.2022.106193

    Article  Google Scholar 

  33. J. Zhang, L. Zhang, L. Chen, X. Zhang, Periodic solitons and rogue waves for (3+1)-dimensional Kadomtsev–Petviashvili equation. Commun. Nonlinear Sci. Numer. Simul. 103, 105642 (2021)

    Google Scholar 

  34. X. Bao, Z. Wang, New rogue wave and breather solutions of the (3+1)-dimensional Kadomtsev–Petviashvili equation. Int. J. Nonlinear Sci. Numer. Simul. 21(2), 173–183 (2020)

    Google Scholar 

  35. C. Zhou, J. Wu, Z. Li, New non-traveling wave solutions for the (3+1)-dimensional Kadomtsev–Petviashvili equation. J. Korean Phys. Soc. 74(12), 1156–1163 (2019)

    Google Scholar 

  36. H. Liu, Y. Zhang, J. Li, Solitary wave solutions and stability analysis for the (3+1)-dimensional Kadomtsev–Petviashvili equation. Chaos, Solitons Fractals 119, 259–266 (2019)

    Google Scholar 

  37. W. Zhang, H. Sun, Symmetry reductions and exact solutions for the (3+1)-dimensional Kadomtsev–Petviashvili equation. J. Korean Phys. Soc. 75(6), 554–562 (2019)

    Google Scholar 

  38. T. Sahoo, B. Khan, J.K. Sarma, New types of solitary wave solutions of the (3+1)-dimensional Kadomtsev–Petviashvili equation. Pramana 90(2), 21 (2018)

    ADS  Google Scholar 

  39. S. Liu, S. Li, X. Gao, New exact solutions for the (3+1)-dimensional Kadomtsev–Petviashvili equation. J. Nonlinear Sci. Appl. 11(11), 592–599 (2018)

    Google Scholar 

  40. V.G. Dubrovsky, Some properties of the Kadomtsev–Petviashvili equation. J. Math. Sci. 126(1), 1247–1271 (2005)

    Google Scholar 

  41. B. Ghanbari, M. Inc, A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear schrödinger equation. Eur. Phys. J. Plus 133(4), 142 (2018)

    Article  Google Scholar 

  42. D. Zhao, D. Lu, S.A. Salama, M.M. Khater, Stable novel and accurate solitary wave solutions of an integrable equation: Qiao model. Open Phys. 19(1), 742–752 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The author thanks the journal’s team (Editors and Reviewers) for their help and support.

Funding

No fund has been received for this paper.

Author information

Authors and Affiliations

Authors

Contributions

All the work has been done by the author himself (Mostafa M. A. Khater).

Corresponding author

Correspondence to Mostafa M. A. Khater.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Appendix

Appendix

Consider the general form of the nonlinear partial differential equation in the following form:

$$\begin{aligned} \Psi (E,E_t,E_x,E_{t\,t},E_{x\,x},....)=0, \end{aligned}$$
(29)

such that \(\Psi\) is a polynomial function in E(xt) and its partial derivatives. In the following, we show the basic structure of modified exp \(\left( -\phi \left( \varsigma \right) \right)\) expansion function method:

First Step: Implementation of the wave transformation

$$\begin{aligned} E(x,t)=S(\varsigma ), \ \ \ \ \ \ \varsigma =(x-c\,t), \end{aligned}$$
(30)

where (c) is the wave velocity that would turn the partial differential equation into an ordinary differential equation to be in the following form:

$$\begin{aligned} \Omega (S,S',S'',S''',.....)=0, \end{aligned}$$
(31)

where \(\Omega\) is a polynomial function in \(S(\varsigma )\) and its total derivatives.

Second Step: Assume that the general solution of ODE (31) can be voiced by a polynomial in \(\mathrm{{exp}}(-\phi (\varsigma ))\) as follows

$$\begin{aligned} u(\varsigma )=\frac{\sum \nolimits _{0} ^{N} a_{i}\,\mathrm{{exp}}(-i\,\phi (\varsigma )) }{\sum \nolimits _{0} ^{M} b_{j}\,\mathrm{{exp}}(-j\,\phi (\varsigma )) }, \end{aligned}$$
(32)

where \(\phi (\varsigma )\) fulfill the following ordinary differential equation:

$$\begin{aligned} \phi '(\varsigma )= \zeta _1+\zeta _2 \,e^{\phi (\varsigma )}+\frac{\zeta _2 }{e^{\phi (\varsigma )}}. \end{aligned}$$
(33)

The solutions of ODE (33) have many cases; these solutions depend on the values of these parameters \((\zeta _1,\, \zeta _2,\, \zeta _2)\), where \(\left[ a_{0},...,a_{N},\, b_{1},...,b_{M},\, \zeta _1,\,\zeta _2\right]\) are constants to be determined later. Where \((a_{N},\, b_{M})\ne 0\).

Third Step: Substituting Eq. (32) and its derivatives together Eq. (33) into Eq. (31) and gathering all the terms of the same power \(\mathrm{{exp}}\left( -m\varphi (\varsigma )\right)\), \((m= 0,1, 2, 3,....)\) and equating them to zero, we obtain a system of algebraic equations, which can be solved by Maple or Mathematica to get the values of \((a_{i},\, b_{j},\, \zeta _1,\,\zeta _2)\).

Fourth Step: Replacing these values into the general exact traveling solution (32) that suggested by the method, we obtain the exact solutions of Eq. (31).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khater, M.M.A. Horizontal stratification of fluids and the behavior of long waves. Eur. Phys. J. Plus 138, 715 (2023). https://doi.org/10.1140/epjp/s13360-023-04336-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04336-z

Navigation