Skip to main content
Log in

Solitary waves solutions and local conserved vectors for extended quantum Zakharov–Kuznetsov equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper studies a \((3+1)\)-dimensions extended quantum Zakharov–Kuznetsov (qZK) equation. The quantum Zakharov–Kuznetsov (qZK) equation models several physical phenomena such as ion-acoustic waves in a magnetized plasma composed of cold ions and hot isothermal electrons. The quantum plasmas and their new structures have attracted researchers at both experimental and theoretical level. The powerfulness of this equation resulted in many scholars finding closed-form solutions of this equation so as to have exhaustive understanding of certain physical features embedded in the qZK equation. Soliton solutions have become one of the most significant solutions in solving nonlinear evolution equations (NLEEs) due to their applications in different physical fields like plasma physics, solid state physics, neural physics and diffusion process. With this reason, we aim to implement ansatz methods to derive a variety of soliton solutions such as bright, singular and dark solitary waves solutions. Furthermore, we will construct local conservation laws via the variational approach. Thereafter, the dynamical behaviors through graphical representation of the derived solutions will be discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. A.M. Wazwaz, Exact solutions for the ZK-MEW equation by using the tanh and sine-cosine methods. Int. J. Comput. Math. 82, 699–708 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. A.M. Wazwaz, A study on KdV and Gardner equations with time-dependent coefficients and forcing terms. Appl. Math. Comput. 217, 2277–2281 (2010)

    MathSciNet  MATH  Google Scholar 

  3. A.M. Wazwaz, Completely integrable coupled KdV and coupled KP systems. Commun. Nonlinear Sci. Numer. Simul. 15, 2828–2835 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. X. Lü, S.T. Chen, W.X. Ma, Constructing lump solutions to a generalized Kadomtsev-Petviashvili-Boussinesq equation. Nonlinear Dyn. 86, 523–534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. X. Lü, W.X. Ma, Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85, 1217–1222 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. X. Liu, Y. Jiao, Y. Wang, Q. Zhou, W. Wang, Kink soliton behavior study for systems with power-law nonlinearity. Results Phys. 33, 105162 (2022)

    Article  Google Scholar 

  7. G.W. Bluman, S. Kumei, Symmetries and Differential Equations, Applied Mathematical Sciences (Springer, New York, 1989), p.81

    Book  MATH  Google Scholar 

  8. P.J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics, 2nd edn. (Springer, Berlin, 1993), p.107

    Book  Google Scholar 

  9. M.L. Gandarias, M. Rosa, R. Tracin à, Symmetry analysis for a Fisher equation with exponential diffusion. Math. Methods Appl. Sci. 41, 7214–7226 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. M.L. Gandarias, M. Rosa, Symmetry Analysis and Conservation Laws for Some Boussinesq Equations with Damping Terms (Birkhäuser, Cham, 2019), pp.229–251

    MATH  Google Scholar 

  11. J.H. He, X.H. Wu, Exp-Function Method for Nonlinear Wave Equations. Chaos Soliton Fract. 30, 700–708 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. B. Muatjetjeja, A.R. Adem, Rosenau-KdV equation coupling with the Rosenau-RLW equation: conservation laws and exact solutions. Int. J. Nonlinear Sci. Numer. Simul. 18, 451–456 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. N.A. Kudryashov, On types of nonlinear nonintegrable differential equations with exact solutions. Phys. Lett. A 155, 269–275 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  14. N.A. Kudryashov, One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 17, 2248–2253 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. V.E. Zakharov, E.A. Kuznetsov, On three-dimensional solitons. Sov. Phys. JETP 39, 285–288 (1974)

    ADS  Google Scholar 

  16. W.M. Moslem, S. Ali, P.K. Shukla, X.Y. Tang, G. Rowlands, Solitary, explosive, and periodic solutions of the quantum Zakharov-Kuznetsov equation and its transverse instability. Phys. Plasmas 14, 082308 (2007)

    Article  ADS  Google Scholar 

  17. A. Wazwaz, Solitary waves solutions for extended forms of quantum Zakharov-Kuznetsov equations. Phys. Scr. 85, 025006 (2012)

    Article  ADS  MATH  Google Scholar 

  18. M.A. Akbar, M.A. Kayum, M.S. Osman, Bright, periodic, compacton and bell-shape soliton solutions of the extended QZK and (3+1)-dimensional ZK equations. Commun. Theor. Phys. 73, 105003 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. H. Triki, A. Wazwaz, Bright and dark soliton solutions for a \(K(m, n)\) equation with t-dependent coefficients. Phys. Lett. A 373, 2162–2165 (2009)

    Article  ADS  MATH  Google Scholar 

  20. H. Triki, A. Wazwaz, Bright and dark soliton solutions for a new fifth-order nonlinear integrable equation with perturbation terms. J. King Saud Univ. Sci. 24, 295–299 (2012)

    Article  Google Scholar 

  21. H. Triki, A. Benlalli, A. Wazwaz, Exact solutions of the generalized Pochhammer-Chree equation with sixth-order dispersion. Rom. J. Phys. 60, 935–951 (2015)

    Google Scholar 

  22. H. Triki, N. Boucerredj, Soliton solutions of the Klein-Gordon-Zakharov equations with power law nonlinearity. Appl. Math. Comput. 227, 341–346 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Y. Yıldırım, E. Yasar, A (2+1)-dimensional breaking soliton equation: solutions and conservation laws. Chaos Solitons Fract. 107, 146–155 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. I. Humbu, B. Muatjetjeja, T.G. Motsumi, A.R. Adem, Periodic solutions and symmetry reductions of a generalized Chaffee-Infante equation. Partial Differ. Equ. Appl. Math. 7, 100497 (2023)

    Article  Google Scholar 

  25. S.C. Anco, G. Bluman, Direct construction method for conservation laws of partial differential equations Part I: examples of conservation law classifications. Eur. J. Appl. Math. 13, 545–566 (2002)

    Article  MATH  Google Scholar 

  26. S.C. Anco, G. Bluman, Direct construction method for conservation laws of partial differential equations Part II: general treatment. Eur. J. Appl. Math. 13, 567–585 (2002)

    Article  MATH  Google Scholar 

  27. A.M. Wazwaz, A sine-cosine method for handling, nonlinear wave equations. Math. Comput. Model. 40, 499–508 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I. Humbu would like to thank University of Botswana (UB) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Muatjetjeja.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests. The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Humbu, I., Muatjetjeja, B., Motsumi, T.G. et al. Solitary waves solutions and local conserved vectors for extended quantum Zakharov–Kuznetsov equation. Eur. Phys. J. Plus 138, 873 (2023). https://doi.org/10.1140/epjp/s13360-023-04470-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04470-8

Navigation