Skip to main content
Log in

Ordered systems of ultrafine ferromagnetic particles

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

A simple model for systems of dipolarly interacting single-domain ultrafine ferromagnetic particles is studied by Monte Carlo simulations. Zero field cooling and field cooling as well as relaxation experiments are used to compare systems with positional and orientational disorder to systems which are (i) positionally, (ii) orientationally, and (iii) positionally and orientationally ordered. It is shown that, as far as macroscopic observables are concerned, these partially [cases (i) and (ii)] or fully [case (iii)] ordered systems, despite quantitative differences, behave qualitatively very similar to the disordered one. This holds true even for the relaxation, where the decay of the magnetization M(t)/MS (measured in units of the saturation magnetization MS) leads to an instantaneous relaxation rate W(t) = -d/dt ln [ M(t)/MS ] vanishing as a power-law as a function of time t, W(t) ∝t-n. The exponent n is found to increase with increasing concentration, and becomes n > 1 for dense systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.L. Dormann, D. Fiorani, E. Tronc, Adv. Chem. Phys. 98, 283 (1997); X. Batlle, A. Labarta, J. Phys. D 35, R15 (2002)

    CAS  Google Scholar 

  • E.C. Stoner, E.P. Wohlfarth, Phil. Trans. Roy. Soc. A 240, 599 (1948) [reprinted in IEEE Trans. Mag. 27, 3475 (1991)]; L. Néel, Ann. Geophysique 5, 99 (1949); W.F. Brown, Phys. Rev. 130, 1677 (1963); A. Aharoni, I. Eisenstein, Phys. Rev. B 11, 514 (1975); W.T. Coffey, D.S.F. Crothers, Yu.P. Kalmykov, E.S. Massawe, J.T. Waldron, Phys. Rev. E 49, 1869 (1994); S. Shtrikman, E.P. Wohlfarth, Phys. Lett. A 85, 467 (1981); R.W. Chantrell, E.P. Wohlfarth, J. Magn. Magn. Mater. 40, 1 (1983)

    Google Scholar 

  • (a) J.L. Dormann, L. Bessais, D. Fiorani, J. Phys. C 21, 2015 (1988); (b) R.W. Chantrell, M. El-Hilo, K. O’Grady, IEEE Trans. Mag. 27, 3570 (1991); (c) W.L. Luo, S.R. Nagel, T.F. Rosenbaum, R.E. Rosensweig, Phys. Rev. Lett. 67, 2721 (1991); (d) S. Mørup, E. Tronc, Phys. Rev. Lett. 72, 3278 (1994); (e) S. Mørup, Europhys. Lett. 28, 671 (1994); (f) T. Jonsson, J. Mattsson, C. Djurberg, F.A. Khan, P. Nordblad, P. Svedlindh, Phys. Rev. Lett. 75, 4138 (1995); (g) J.L. Dormann, F. D’Orazio, F. Lucari, E. Tronc, P. Prené, J.P. Jolivet, D. Fiorani, R. Cherkaoui, M. Noguès, Phys. Rev. B 53, 14291 (1996) and J.L. Dormann, L. Spinu, E. Tronc, J.P. Jolivet, F. Lucari, F. D’Orazio, D. Fiorani, J. Magn. Magn. Mater. 183, L255 (1998); (h) M.F. Hansen, F. Bødker, S. Mørup, K. Lefmann, K.N. Clausen, P.-A. Lindgård, Phys. Rev. Lett. 79, 4910 (1997); (i) C. Djurberg, P. Svedlindh, P. Nordblad, M.F. Hansen, F. Bødker, S. Mørup, Phys. Rev. Lett. 79, 5154 (1997); (j) C. Johansson, M. Hanson, M.S. Pedersen, S. Mørup, J. Magn. Magn. Mater. 173, 5 (1997); (k) M.F. Hansen, S. Mørup, J. Magn. Magn. Mater. 184, 262 (1998); (l) H. Mamiya, I. Nakatani, T. Furubayashi, Phys. Rev. Lett. 80, 177 (1998); (m) T. Jonsson, P. Svedlindh, M.F. Hansen, Phys. Rev. Lett. 81, 3976 (1998); (n) P. Allia, M. Coisson, M. Knobel, P. Tiberto, F. Vinai, Phys. Rev. B 60, 12207 (1999); P. Allia, M. Coisson, M. Knobel, P. Tiberto, F. Vinai, M.A. Novak, W.C. Nunes, Phys. Rev. B 64, 144420 (2001); (o) M.F. Hansen, C.B. Koch, S. Mørup, Phys. Rev. B 62, 1124 (2000); (p) J.C. Denardin, A.L. Brandl, M. Knobel, P. Panissod, A.B. Pakhomov, H. Liu, X.X. Zhang, Phys. Rev. B 65, 064422 (2002): (q) Y. Sun, M.B. Salamon, K. Garnier, R.S. Averback, Phys. Rev. Lett. 91, 167206 (2003)

    Google Scholar 

  • J.-O. Andersson, C. Djurberg, T. Jonsson, P. Svedlindh, P. Nordblad, Phys. Rev. B 56, 13983 (1997)

    CAS  Google Scholar 

  • J. García-Otero, M. Porto, J. Rivas, A. Bunde, Phys. Rev. Lett. 84, 167 (2000)

    PubMed  Google Scholar 

  • M. Porto, Eur. Phys. J. B 26, 229 (2002)

    CAS  Google Scholar 

  • M. Ulrich, J. García-Otero, J. Rivas, A. Bunde, Phys. Rev. B 67, 024416 (2003)

    Google Scholar 

  • M. Porto, J. Appl. Phys. 92, 6057 (2002)

    CAS  Google Scholar 

  • G. Ayton, M.J.P. Gingras, G.N. Patey, Phys. Rev. Lett. 75, 2360 (1995); G. Ayton, M.J.P. Gingras, G.N. Patey, Phys. Rev. E 56, 562 (1997); S. Ravichandran, B. Bagchi, Phys. Rev. Lett. 76, 644 (1996); Phys. Rev. E 54, 3693 (1996); for a comprehensive review on orientational glasses see U.T. Höchli, K. Knorr, A. Loidl, Adv. Phys. 39, 405 (1990)

    CAS  PubMed  Google Scholar 

  • M.D. Bentzon, J. v. Wonterghem, S. Mørup, A. Thoelen, C.J.W. Koch, Phil. Mag. B 60, 169 (1989)

    CAS  Google Scholar 

  • H. Zeng, J. Li, J.P. Liu, Z.L. Wang, S. Sun, Nature 420, 395 (2002)

    CAS  PubMed  Google Scholar 

  • T. Kenichi, S. Kyoko, F. Hiroshi, O. Mitsuko, Nature 423, 971 (2003)

    CAS  PubMed  Google Scholar 

  • L. Thomas, B. Barbara, J. Low Temp. Phys. 113, 1055 (1998); L. Thomas, A. Caneschi, B. Barbara, Phys. Rev. Lett. 83, 2398 (1999)

    CAS  Google Scholar 

  • J.M. Luttinger, L. Tisza, Phys. Rev. 70, 954 (1946)

    CAS  Google Scholar 

  • J. García-Otero, M. Porto, J. Rivas, A. Bunde, J. Appl. Phys. 85, 2287 (1999)

    Google Scholar 

  • M. El-Hilo, R.W. Chantrell, K. O’Grady, J. Appl. Phys. 84, 5114 (1998)

    CAS  Google Scholar 

  • To give an estimate for the concentration range c/c0 = 0.13 to c/c0 = 0.26 in real units: Maghemite particles with mean diameter of approx. 7.5 nm studied by Jonsson et al. [Phys. Rev. Lett. 75, 4138 (1995)] show MS = 420 emu/cm3 and K = 1.9 ×105 erg/cm3, which gives \(c_0 \cong 2.15\). For iron-nitride particles with mean diameter of approx. 6 nm, Mamiya et al. [Phys. Rev. Lett. 80, 177 (1998)] found MS = 1182 emu/cm3 and K = 106 erg/cm3, which yields \(c_0 \cong 1.43\). Accordingly, the concentration range c/c0 = 0.13 to c/c0 = 0.26 considered here correspond to a range \(c \cong 0.28\) to \(c \cong 0.56\) in the case of maghemite particles and to a range \(c \cong 0.18\) to \(c \cong 0.36\) in the case of iron-nitride particles, respectively

    Google Scholar 

  • S.W. de Leeuw, J.W. Perram, E.R. Smith, Proc. R. Soc. Lond. A 373, 27 (1980)

    Google Scholar 

  • M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987)

  • A.F. Pshenichnikov, V.V. Mekhonoshin, J. Magn. Magn. Mater. 213, 357 (2000); R.W. Chantrell, N. Walmsley, J. Gore, M. Maylin, Phys. Rev. B 63, 024410 (2001)

    CAS  Google Scholar 

  • All MC simulations (the preceding positional and the main magnetic one) are performed using the standard Metropolis algorithm, see for example K. Binder, D.W. Heermann, Monte Carlo Simulations in Statistical Physics: An Introduction, Springer Series in Solid State Science, Vol. 80, 3nd edn. (Springer, Berlin, 1997)

  • In actual experiments, the effective value of T* may be controlled for instance by the particles’ coating as done by M.F. Hansen et al. [Phys. Rev. B 62, 1124 (2000)]

    Google Scholar 

  • J. García-Otero, M. Porto, J. Rivas, J. Appl. Phys. 87, 7376 (2000)

    Google Scholar 

  • R. Street, J.C. Woolley, Proc. Phys. Soc. A 62, 562 (1949); P. Gaunt, J. Appl. Phys. 59, 4129 (1986); M. El-Hilo, K. O’Grady, R.W. Chantrell, J. Magn. Magn. Mater. 109, L164 (1992); M. El-Hilo, K. O’Grady, R.W. Chantrell, D.P.E. Dickson, J. Magn. Magn. Mater. 123, 30 (1993); A. Lyberatos, R.W. Chantrell, E.R. Sterringa, J.C. Lodder, J. Appl. Phys. 70, 4431 (1991)

    Google Scholar 

  • R.V. Chamberlin, G. Mozurkewich, R. Orbach, Phys. Rev. Lett. 52, 867 (1984); K.L. Ngai, U. Strom, Phys. Rev. B 38, 10350 (1988)

    CAS  Google Scholar 

  • It is important to note that essentially all functional forms which have been suggested for the decay of the magnetization M(t) yield instantaneous relaxation rates W(t) which decay approximately as a power-law W(t) ∝ t-n for large t

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Porto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porto, M. Ordered systems of ultrafine ferromagnetic particles. Eur. Phys. J. B 45, 369–375 (2005). https://doi.org/10.1140/epjb/e2005-00186-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2005-00186-3

Keywords

Navigation