Skip to main content
Log in

Effects of Gd3+ doping on structural and dielectric properties of PZT (Zr:Ti = 52:48) piezoceramics

  • Solid and Condensed State Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

The purpose of this research is to study the effect of doping Gd into Pb(Zr0.52Ti0.48)O3 ceramics prepared by solid state reaction. X-ray diffraction patterns show that all PGZT samples are of tetragonal structure and the highest doping should be no more than 2 mole % Gd at which the unreacted oxides start to appear. The electron spin resonance (ESR) spectra of PGZT's indicate that Gd3+ can enter both A site of the perovskite structure instead of only A site as widely believed. The ESR peaks resonance shift towards low fields as the concentration is higher, which is due to the change in crystal field experienced by Gd3+ ions. At x =0.001, 0.005 and 0.01 dopings, two sets of powder ESR signals arising from Gd3+ (4f7, spin 7/2) ions at A site. The first set shows some fine structure having strong absorption peaks centered at 76.26 mT (g = 8.550). The second is a seven-peak spectrum centered at 206.01 mT (g = 3.165), which belongs to the Gd3+ ions at B sites. Furthermore, the overlapped ESR strong absorption peaks from 309.17 mT to 314.49 mT (g = 2.2818-2.1087) belong to Gd3+ of unreacted Gd2O3. The local environments of Gd3+ ions were verified from the calculated ESR spectra using appropriate spin Hamiltonian parameter, i.e. gyromagnetic tensor g, zero-field splitting D and hyperfine tensor A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, New York, 1971)

  • B. Noheda, D.E. Cox, G. Shirane, J.A. Gonzalo, L.E. Cross, S.-E. Park, Appl. Phys. Lett. 74, 2059 (1999)

    Article  ADS  Google Scholar 

  • B. Noheda, J.A. Gonzalo, L.E. Cross, R. Guo, S.-E. Park, D.E. Cox, G. Shirane, Phys. Rev. B 61, 8687 (2000)

    Article  ADS  Google Scholar 

  • R. Guo, L.E. Cross, S.-E. Park, B. Noheda, D.E. Cox, G. Shirane, Phys. Rev. Lett. 84, 5423 (2000)

    Article  ADS  Google Scholar 

  • L. Bellaiche, A. Garcia, D. Vaderbilt, Phys. Rev. Lett. 84, 5427 (2000)

    Article  ADS  Google Scholar 

  • F. Kulscar, J. Am. Ceram. Soc. 42, 49 (1959)

    Google Scholar 

  • T.K. Kamiya, T. Suzuki, T. Tsurumi, Jpn J. Applied Phys. 31, 3058 (1992)

    Article  ADS  Google Scholar 

  • S. Takahashi, S. Hirose, Jpn J. Applied Phys. 31, 3057 (1992)

    ADS  Google Scholar 

  • H.D. Sharma, A.K. Tripathi, V. Chariar, T.C. Goel, P.K.C. Pilai, Mater. Sci. Eng. B 25, 29 (1994)

    Article  ADS  Google Scholar 

  • G.H. Haertling, in Electronic Ceramics, edited by L.M. Levinson (Marcel Dekker, New York, 1988), pp. 371–492.

  • T.C. Goel, P.K.C. Pillai, H.D. Sharma, A.K. Tipathi, A. Tripathi, C. Pramila, A. Govinder, IEEE Transactions: Ultrasonic Ferroelectrics and Frequency Control 94, 720 (1994)

    Google Scholar 

  • R.C. Turner, P.A. Fuierer, R.E. Newnham, T.R. Shrout, Appl. Acoust. 41, 299 (1994)

    Article  Google Scholar 

  • W.R. Cook, J.R. Jaffe, H. Jaffe, Piezoelectric Ceramics (New York, Academic Press, 1971)

  • J.S. Kim, K.H. Yoon, B.H. Choi, J.O. Park, J. Korean. Ceram. Soc. 27, 187 (1990)

    Google Scholar 

  • T. Kamiya, T. Suzuki, T. Tsurumi, M. Daimon, Jpn J. Appl. Phys. 31, 3058 (1992)

    Article  ADS  Google Scholar 

  • K. Hayashi, A. Ando, Y. Hamaji, Y. Sakabe, Jpn J. Appl. Phys. 37, 5237 (1998)

    Article  ADS  Google Scholar 

  • J.S. Kim, S.J. Kim, H.G. Kim, D.C. Lee, K. Uchino, Jpn J. Appl. Phys. 38, 1433 (1999)

    Article  ADS  Google Scholar 

  • G. Galassi, J. Eur. Ceram. Soc. 19, 1237 (1999)

    Article  Google Scholar 

  • H. Park, C.Y. Park, Y.S. Hong, K. Kim, S.K. Kim, J. Am. Ceram. Soc. 82, 94 (1999)

    Article  Google Scholar 

  • J.A. Dean, Lange's Handbook of Chemistry, 13th edn. (McGraw Hill, New York, 1985)

  • K.H. Härdtl, D. Hennings, J. Am. Ceram. Soc. 55(5), 20 (1972)

    Google Scholar 

  • A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Irons (Oxford, London, UK, Clarendon Press, 1970)

  • S. Boonyuen, L. Pdungsap, P. Winotai, T. Sudyodsuk, P. Petchpong, Int. J. Mode. Phys. B 16(23), 3515 (2002)

    Article  Google Scholar 

  • P. Winotai, N. Udomkan, S. Meejoo, Sensor. Actua. A 122, 257 (2005)

    Article  Google Scholar 

  • S.R. Shannigrahi, R.N.P. Choudhary, Mater. Res. Bull. 34, 1875 (1999)

    Article  Google Scholar 

  • S.K.S. Parashar, R.N.P. Choudhary, B.S. Murty, Mater. Sci. Eng. B 110, 58 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Udomkan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pdungsap, L., Boonyeun, S., Winotai, P. et al. Effects of Gd3+ doping on structural and dielectric properties of PZT (Zr:Ti = 52:48) piezoceramics. Eur. Phys. J. B 48, 367–372 (2005). https://doi.org/10.1140/epjb/e2005-00407-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2005-00407-9

Keywords

Navigation