Skip to main content
Log in

A discrete nonlinear mass transfer equation with applications in solid-state sintering of ceramic materials

  • Condensed Matter
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

The evolution of grain structures in materials is a complex and multiscale process that determines the material's final properties [1]. Understanding the dynamics of grain growth is a key factor for controlling this process. We propose a phenomenological approach, based on a nonlinear, discrete mass transfer equation for the evolution of an arbitrary initial grain size distribution. Transition rates for mass transfer across grains are assumed to follow the Arrhenius law, but the activation energy depends on the degree of amorphization of each grain. We argue that the magnitude of the activation energy controls the final (sintered) grain size distribution, and we verify this prediction by numerical simulation of mass transfer in a one-dimensional grain aggregate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • N. Goldenfeld, P.A. Badrinarayan, J.A. Dantzig, Phys. Rev. E 72, 020601(R) (2005)

    Article  ADS  Google Scholar 

  • Y.M. Chiang, K. Jakus, Fundamental Research Needs in Ceramics, USA NSF Workshop Report (1999)

  • P. Palmero, C. Stella, A. Simone, C. Esnouf, G. Fantozzi, L. Montanaro, Glass Phys. Chem. 31, 530 (2005)

    Article  Google Scholar 

  • B.B. Bokhonov, V.V. Konstanchuk, V.V. Boldyrev, Mater. Res. Bull. 30, 1277 (1995)

    Article  Google Scholar 

  • A.Z. Juhasz, Colloid Surface A 141, 449 (1998)

    Article  Google Scholar 

  • P. Balaz, Int. J. Miner. Process. 72, 341 (2003)

    Article  Google Scholar 

  • V.V. Boldyrev, S.V. Pavlov, E.L. Goldberg, Int. J. Miner. Process. 44, 181 (1996)

    Article  Google Scholar 

  • E. Kostic et al., Powder Technol. 107, 48 (2000)

    Article  Google Scholar 

  • B.D. Stojanovic, J. Mater. Process. Technol. 143, 78 (2002)

    Article  Google Scholar 

  • M. Braginsky, V. Tikare, E. Olesky, Int. J. Solids Struct. 42, 621 (2005)

    Article  MATH  Google Scholar 

  • S. Kucherenko, J. Pan, J.A. Yeomans, Comp. Mater. Sci. 18, 76 (2000)

    Article  Google Scholar 

  • A.L. Maximenko, E.A. Olevsky, Acta Mater. 52, 2953 (2004)

    Article  Google Scholar 

  • H. Heegn, F. Birkender, A. Kamptner, Cryst. Res. Technol. 38, 7 (2003)

    Article  Google Scholar 

  • J.M. Xue, D.M. Wan, J. Wang, Solid State Ionics 151, 403 (2002)

    Article  Google Scholar 

  • V.V. Boldyrev, Ultrason. Sonochem. 2, S143 (1995)

  • E. Olevsky, Mater. Sci. Engin. R23, 41 (1998)

  • M.A. Miodownik, J. Light Metals. 2, 125 (2002)

    Article  Google Scholar 

  • G.I. Barenblatt, Dimensional Analysis (Gordon and Breach, NY 1987)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. T. Hristopulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hristopulos, D., Leonidakis, L. & Tsetsekou, A. A discrete nonlinear mass transfer equation with applications in solid-state sintering of ceramic materials. Eur. Phys. J. B 50, 83–87 (2006). https://doi.org/10.1140/epjb/e2006-00034-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2006-00034-0

PACS.

Navigation