Skip to main content
Log in

Maximum entropy principle and power-law tailed distributions

  • Topical issue on Generalized Entropies and Non-Linear Kinetics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In ordinary statistical mechanics the Boltzmann-Shannon entropy is related to the Maxwell-Bolzmann distribution pi by means of a twofold link. The first link is differential and is offered by the Jaynes Maximum Entropy Principle. Indeed, the Maxwell-Boltzmann distribution is obtained by maximizing the Boltzmann-Shannon entropy under proper constraints. The second link is algebraic and imposes that both the entropy and the distribution must be expressed in terms of the same function in direct and inverse form. Indeed, the Maxwell-Boltzmann distribution pi is expressed in terms of the exponential function, while the Boltzmann-Shannon entropy is defined as the mean value of -ln (pi). In generalized statistical mechanics the second link is customarily relaxed. Of course, the generalized exponential function defining the probability distribution function after inversion, produces a generalized logarithm Λ(pi). But, in general, the mean value of -Λ(pi) is not the entropy of the system. Here we reconsider the question first posed in [Phys. Rev. E 66, 056125 (2002) and 72, 036108 (2005)], if and how is it possible to select generalized statistical theories in which the above mentioned twofold link between entropy and the distribution function continues to hold, such as in the case of ordinary statistical mechanics. Within this scenario, apart from the standard logarithmic-exponential functions that define ordinary statistical mechanics, there emerge other new couples of direct-inverse functions, i.e. generalized logarithms Λ(x) and generalized exponentials Λ-1(x), defining coherent and self-consistent generalized statistical theories. Interestingly, all these theories preserve the main features of ordinary statistical mechanics, and predict distribution functions presenting power-law tails. Furthermore, the obtained generalized entropies are both thermodynamically and Lesche stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A.M. Mathai, A Handbook of generalized Special Functions for Statistical and Physical Sciences (Clarendon, Oxford 1993)

  • A. Hasegawa, A.M. Kunioki, M. Duong-van, Phys. Rev. Lett. 54, 2608 (1985)

    Google Scholar 

  • V.M. Vasyliunas, J. Geophys. Res. 73, 2839 (1968)

    Google Scholar 

  • P.L. Biermann, G. Sigl, Lectures Notes in Physics 576 (Spring-Verlag, Berlin, 2001)

  • G. Wilk, Z. Wlodarczyk, Phys. Rev. D 50, 2318 (1994)

    Google Scholar 

  • D.B. Walton, J. Rafelski, Phys. Rev. Lett. 84, 31 (2000)

    Google Scholar 

  • A. Ott, J.P. Bouchaud, D. Langevin, W. Urbach, Phys. Rev. Lett. 65, 2201 (1990)

    Google Scholar 

  • J.P. Bouchaud, A. Georges, Phys. Rep. 195, 127 (1990)

    Google Scholar 

  • M.F. Shlesinger, G.M. Zaslavsky, J. Klafter, Nature 363, 31 (1993)

    Google Scholar 

  • T.H. Solomon, E.R. Weeks, H.L. Swinney, Phys. Rev. Lett. 71, 3975 (1993)

    Google Scholar 

  • R.A. Antonia, N. Phan-Thien, B.R. Satyoparakash, Phys. Fluids 24, 554 (1981)

    Google Scholar 

  • B.M. Boghosian, Phys. Rev. E 53, 4754 (1996)

  • K. Kasahara, Earthquake Mechanics (Cambridge University Press, Cambridge, 1981)

  • M. Ausloos, K. Ivanova, Phys. Rev. E 63, 047201 (2001)

    Google Scholar 

  • E.T. Lu, R.J. Hamilton, Astrophysical Journal 380, 89 (1991)

    Google Scholar 

  • K.J. Niklas, Amer. J. Botany 81, 134 (1994)

    Google Scholar 

  • J.C. Nacher, T. Ochiai Phys. Lett. A 372, 6202 (2008)

  • V. Plerou, P. Gopikrishnan, L.A. Nunes Amaral, Xavier Gabaix, H.E. Stanley, Phys. Rev. E 62, R3023 (2000)

  • X. Gabaix, P. Gopikrishnan, V. Plerou, H.E. Stanley, Nature 423, 267 (2003)

    Google Scholar 

  • V. Pareto, Cours d’Économie Politique (Droz, Geneva 1896)

  • A. Blank, S. Solomon, Physica A 287, 279 (2000)

  • S. Miyazima, Y. Lee, T. Nagamine, H. Miyajima, Physica A 278, 282 (2000)

    Google Scholar 

  • H. Ebel, L.-I. Mielsch, S. Bornholdt, Phys. Rev. E 66, 035103 (2002)

    Google Scholar 

  • S. Wichmann, D. Stauer, F.W.S. Lima et al., Transact. of the Phil. Society 105, 126 (2007)

    Google Scholar 

  • K. Kosmidis, A. Kalampokis, P. Argyrakis, Physica A 366, 495 (2006)

    Google Scholar 

  • Y.M. Choi, H.J. Kim, Physica A 382, 665 (2007)

    Google Scholar 

  • D.C. Roberts, D. L. Turcotte, Fractals 6, 351 (1998)

  • A. Clauset, M. Young, K.S. Gleditsch, J. of Conflict Resolution 51, 58 (2007)

    Google Scholar 

  • S. Redner, Eur. Phys. J. B 4, 131 (1998)

    Google Scholar 

  • B. Tadic, S. Thurner, G.J. Rodger, Phys. Rev. E 69, 036102 (2004)

    Google Scholar 

  • M.E.J. Newman, Contemporary Physics 46, 323 (2005)

    Google Scholar 

  • D. Sornette, Phys. Rev. E 57, 4811 (1998)

    Google Scholar 

  • M.L. Goldstein, S.A. Morris, G.G. Yen, Eur. Phys. J. B 41, 255 (2004)

    Google Scholar 

  • G. Kaniadakis, G. Lapenta, Phys. Rev. E 62, 3246 (2000)

    Google Scholar 

  • G. Kaniadakis, M. Lissia, A.M. Scarfone, Physica A 340, 41 (2004)

    Google Scholar 

  • G. Kaniadakis, M. Lissia, A.M. Scarfone, Phys. Rev. E 71, 046128 (2005)

    Google Scholar 

  • S. Abe, J. Phys. A: Math. Gen. 36, 8733 (2003)

    Google Scholar 

  • T.D. Frank, Phys. Lett. A E 299, 153 (2002)

    Google Scholar 

  • I. Csiszar, Ann. Prob. 3, 146 (1975)

    Google Scholar 

  • S. Abe, Phys. Rev. E 66, 046134 (2002)

    Google Scholar 

  • B. Lesche, J. Stat. Phys. 27, 419 (1982)

    Google Scholar 

  • E.T. Jaynes, Phys. Rev. 106, 620 (1957); E.T. Jaynes, Phys. Rev. 108, 171 (1957)

    Google Scholar 

  • T.S. Biro, G. Kaniadakis, Eur. Phys. J. B 50, 3 (2006)

    Google Scholar 

  • G. Kaniadakis, P. Quarati, Physica A 192, 677 (1993)

    Google Scholar 

  • G. Kaniadakis, P. Quarati, Physica A 237, 229 (1997)

    Google Scholar 

  • G. Kaniadakis, A. Lavagno, P. Quarati, Nucl. Phys. B 466, 527 (1996)

    Google Scholar 

  • G. Kaniadakis, A. Lavagno, P. Quarati, Phys. Lett. A 227, 227 (1997)

  • V. Schwammle, E.M.F. Curado, F.D. Nobre, Eur. Phys. J. B 58, 159 (2007)

    Google Scholar 

  • P.-H. Chavanis, Physica A 332, 89 (2004)

    Google Scholar 

  • T.D. Frank, Phys. Lett. A E 305, 150 (2002)

    Google Scholar 

  • G. Kaniadakis, Physica A 296, 405 (2001)

  • G. Kaniadakis, Phys. Lett. A 288, 283 (2001)

  • G. Kaniadakis, Phys. Rev. E 66, 056125 (2002)

    Google Scholar 

  • G. Kaniadakis, Phys. Rev. E 72, 036108 (2005)

    Google Scholar 

  • R. Silva, Eur. Phys. J. B 54, 499 (2006)

    Google Scholar 

  • R. Silva, Phys. Lett. A 352 17 (2006)

    Google Scholar 

  • T. Wada, Phisica A 340, 126 (2004)

  • T. Wada, Continuum Mechanics and Thermodynamics 16, 263 (2004)

    Google Scholar 

  • G. Kaniadakis, A.M. Scarfone, Physica A 340, 102 (2004)

    Google Scholar 

  • S. Abe, G. Kaniadakis, A.M. Scarfone, J. Phys. A: Math. Gen. 37, 10513 (2004)

    Google Scholar 

  • J. Naudts, Physica A 316, 323 (2002)

  • J. Naudts, Rev. Math. Phys. 16, 809 (2004)

    Google Scholar 

  • A.M. Scarfone, T. Wada, Progress Theor. Phys. Suppl. 162, 45 (2006)

    Google Scholar 

  • T. Yamano, Phys. Lett. A 308, 364 (2003)

    Google Scholar 

  • G. Pistone, Eur. Phys. J. B 69 (2009), DOI: 10.1140/epjb/e2009-00154-y

  • Guo Lina, Du Jiulin, Liu Zhipeng, Phys. Lett. A 367, 431 (2007)

  • Guo Lina, Du Jiulin, Phys. Lett. A 362, 368 (2007)

  • G. Lapenta, S. Markidis, A. Marocchino, G. Kaniadakis, The Astrophysical Journal 666, 949 (2007)

    Google Scholar 

  • G. Lapenta, S. Markidis, G. Kaniadakis, J. Stat. Mech., P02024 (2009)

  • A. Rossani, A.M. Scarfone, J. Phys. A 37, 4955 (2004)

    Google Scholar 

  • J.M. Silva, R. Silva, J.A.S. Lima, Phys. Lett. A 372, 5754 (2008)

    Google Scholar 

  • J.C. Carvalho, R. Silva, J.D. do Nascimento Jr., J.R. De Medeiros, EPL 84, 59001 (2008)

    Google Scholar 

  • J.C. Carvalho, J.D. do Nascimento Jr., R. Silva, J.R. De Medeiros, Astrophys. J. Lett. 696, L48 (2009)

  • A.M. Teweldeberhan, H.G. Miller, R. Tegen, Int. J. Mod. Phys. E 12, 669 (2003)

    Google Scholar 

  • F.I.M. Pereira, R. Silva, J.S. Alcaniz, Non-Gaussian statistics and the relativistic nuclear equation of state, e-print arXiv:0902.2383

  • T. Wada, A.M. Scarfone, Eur. Phys. J. B 69 (2009), DOI: 10.1140/epjb/e2009-00159-6

  • M. Coraddu, M. Lissia, R. Tonelli, Physica A 365, 252 (2006)

  • R. Tonelli, G Mezzorani, F. Meloni, M. Lissia, M. Coraddu, Prog. Theor. Phys. 115, 23 (2006)

    Google Scholar 

  • A. Celikoglu A, U. Tirnakli, Physica A 372, 238 (2006)

  • A.I. Olemskoi, V.O. Kharchenko, V.N. Borisyuk, Physica A 387, 1895 (2008)

    Google Scholar 

  • A.Y. Abul-Magd, Phys. Lett. A 361, 450 (2007)

    Google Scholar 

  • A.Y. Abul-Magd, Eur. Phys. J. B 69 (2009), DOI: 10.1140/epjb/e2009-00153-0

  • T. Wada, H. Suyari, Phys. Lett. A 348, 89 (2006)

    Google Scholar 

  • F. Topsoe, Physica A 340, 11 (2004)

  • T. Wada, H. Suyari, Phys. Lett. A 368, 199 (2007)

    Google Scholar 

  • F. Clementi, M. Gallegati, G. Kaniadakis, Eur. Phys. J. B 57, 187 (2007)

    Google Scholar 

  • F. Clementi, T. Di Matteo, M. Gallegati, G. Kaniadakis, Physica A 387, 3201 (2008)

    Google Scholar 

  • F. Clementi, M. Gallegati, G. Kaniadakis, J. Stat. Mech., P02037 (2009)

  • D. Rajaonarison, D. Bolduc, and H. Jayet, Econ. Lett. 86, 13 (2005)

    Google Scholar 

  • D. Rajaonarison, Econ. Lett. 100, 396 (2008)

    Google Scholar 

  • L. Euler, Acta Academiae Scientiarum Petropolitanae (1779–1783), pp. 29–51, Sankt Peterburg; Leonardi Euleri Opera Omnia, Series Prima Opera Mathematica (1921), Vol. IV, pp. 350–369

  • Student (W.S. Gosset), Biometrika 6, 1 (1908)

  • I.W. Burr, Ann. Math. Stat. 13, 215 (1942)

    Google Scholar 

  • J. Harvda, F. Charvat, Kybernetica 3, 30 (1967)

  • C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Google Scholar 

  • C. Tsallis, Quimica Nova 17, 468 (1994)

    Google Scholar 

  • S. Abe, Phys. Lett. A 224, 326 (1997)

    Google Scholar 

  • D.P. Mittal, Metrika, 22, 35 (1975)

  • B.D. Sharma, I.J. Taneja, Metrika 22, 205 (1975)

  • E.P. Borges, I. Roditi, Phys. Lett. A 246, 399 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kaniadakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaniadakis, G. Maximum entropy principle and power-law tailed distributions. Eur. Phys. J. B 70, 3–13 (2009). https://doi.org/10.1140/epjb/e2009-00161-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00161-0

PACS

Navigation