Skip to main content
Log in

Direct fabrication and IV characterization of sub-surface conductive channels in diamond with MeV ion implantation

  • Topical issue on Carbon-based Nanostructures
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In the present work we report about the investigation of the conduction mechanism of sp2 carbon micro-channels in single crystal diamond. The structures are fabricated with a technique which employs a MeV focused ion-beam to damage diamond in conjunction with variable thickness masks. This process changes significantly the structural properties of the target material, because the ion nuclear energy loss induces carbon conversion from sp3 to sp2 state mainly at the end of range of the ions (few micrometers). Furthermore, placing a mask with increasing thickness on the sample it is possible to modulate the channels depth at their endpoints, allowing their electrical connection with the surface. A single-crystal HPHT diamond sample was implanted with 1.8 MeV He+ ions at room temperature, the implantation fluence was set in the range 2.1×1016-6.3×1017 ions cm-2, determining the formation of micro-channels with a graded level of damage extending down to a depth of about 3 μm. After deposition of metallic contacts at the channels’ endpoints, the electrical characterization was performed measuring the I-V curves at variable temperatures in the 80-690 K range. The Variable Range Hopping model was used to fit the experimental data in the ohmic regime, allowing the estimation of characteristic parameters such as the density of localized states at the Fermi level. A value of 5.5×1017 states cm-3 eV-1 was obtained, in satisfactory agreement with values previously reported in literature. The power-law dependence between current and voltage is consistent with the space charge limited mechanism at moderate electric fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.S. Vavilov, V.V. Krasnopevtsev, Y.V. Milijutin, A.E. Gorodetsky, A.P. Zakharov, Radiat. Eff. 22, 141 (1974)

    Article  Google Scholar 

  2. J.J. Hauser, J.R. Patel, Solid State Commun. 18, 789 (1976)

    Article  ADS  Google Scholar 

  3. J.J. Hauser, J.R. Patel, J.W. Rodgers, Appl. Phys. Lett. 30, 129 (1977)

    Article  ADS  Google Scholar 

  4. C. Uzan-Saguy, C. Cytermann, R. Brener, V. Richter, M. Shaanan, R. Kalish, Appl. Phys. Lett. 67, 1194 (1995)

    Article  ADS  Google Scholar 

  5. A.A. Gippius, R.A. Khmelnitskiy, V.A. Dravin, S.D. Tkachenko, Diamond Relat. Mater. 8, 1631 (1999)

    Article  Google Scholar 

  6. P. Olivero, G. Amato, F. Bellotti, O. Budnyk, E. Colombo, M. Jakšć, C. Manfredotti, Z. Pastuović, F. Picollo, N. Skukan, M. Vannoni, E. Vittone, Diamond and Related Materials, in press, DOI: 10.1016/j.diamond.2008.10.068 (2009)

  7. J.F. Prins, Radiat. Eff. Lett. 76, 79 (1983)

    Article  Google Scholar 

  8. J.F. Prins, Phys. Rev. B 31, 2472 (1985)

    Article  ADS  Google Scholar 

  9. A. Reznik, V. Richter, R. Kalish, Phys. Rev. B 56, 7930 (1997)

    Article  ADS  Google Scholar 

  10. A. Reznik, V. Richter, R. Kalish, Diamond Relat. Mater. 7, 317 (1998)

    Article  Google Scholar 

  11. E. Baskin, A. Reznik, D. Saada, Joan Adler, R. Kalish, Phys. Rev. 64, 224110 (2001)

    Article  Google Scholar 

  12. S. Prawer, Diamond Relat. Mater. 4, 862 (1995)

    Article  Google Scholar 

  13. F. Fontaine, E. Gheeraert, A. Deneuville, Diamond Relat. Mater. 5, 752 (1996)

    Article  Google Scholar 

  14. J.F. Prins, J. Phys. D: Appl. Phys. 34, 2089 (2001)

    Article  ADS  Google Scholar 

  15. E. Trajkov, S. Prawer, Diamond Relat. Mater. 15, 1714 (2006)

    Article  Google Scholar 

  16. M.B.H. Breese, D.N. Jamieson, P.J.C. King, Material Analysis Using a Nuclear Microprobe (John Wiley and Sons Inc., New York, 1996)

    Google Scholar 

  17. J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985)

    Google Scholar 

  18. D. Saada, J. Adler, R. Kalish, Int. J. Mod. Phys. C 9, 61 (1998)

    Article  ADS  Google Scholar 

  19. S. Prawer, R. Kalish, Phys. Rev. B 51, 15711 (1995)

    Article  ADS  Google Scholar 

  20. N.F. Mott, E.A. Davis, Electronic Processes in Non- Crystalline Materials, 2nd Edn. (Oxford University Press, 1979)

  21. C. Godet, Philosophical Magazine B 81, 205 (2001)

    Article  ADS  Google Scholar 

  22. J.D. Hunn, S.P. Withrow, C.W. White, D.M. Hembree, Phys. Rev. B 52, 8106 (1995)

    Article  ADS  Google Scholar 

  23. J.O. Orwa, K.W. Nugent, D.N. Jamieson, S. Prawer, Phys. Rev. B 62, 5461 (2000)

    Article  ADS  Google Scholar 

  24. P. Olivero, S. Rubanov, P. Reichart, B.C. Gibson, S.T. Huntington, J.R. Rabeau, A.D. Greentree, J. Salzman, D. Moore, D.N. Jamieson, S. Prawer, Diamond and Related Materials 15, 1614 (2006)

    Article  Google Scholar 

  25. A. Bozhko, M. Shupegin, T. Takagi, Diamond and Related Materials 11, 1753 (2002)

    Article  Google Scholar 

  26. R. Walker, S. Prawer, D.N. Jamieson, K.W. Nugent, R. Kalish, Appl. Phys. Lett. 71, 1492 (1997)

    Article  ADS  Google Scholar 

  27. C. Godet, S. Kumarz, V. Chu, Philosophical Magazine 83, 3351 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Vittone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olivero, P., Amato, G., Bellotti, F. et al. Direct fabrication and IV characterization of sub-surface conductive channels in diamond with MeV ion implantation. Eur. Phys. J. B 75, 127–132 (2010). https://doi.org/10.1140/epjb/e2009-00427-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00427-5

Keywords

Navigation