Skip to main content
Log in

Temperature dependence of the electrical resistivity and the anisotropic magnetoresistance (AMR) of electrodeposited Ni-Co alloys

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The electrical resistivity and the anisotropic magnetoresistance (AMR) was investigated for Ni-Co alloys at and below room temperature. The Ni-Co alloy layers having a thickness of about 2 μm were prepared by electrodeposition on Si wafers with evaporated Cr and Cu underlayers. The alloy composition was varied in the whole concentration range by varying the ratio of Ni-sulfate and Co-sulfate in the electrolyte. The Ni-Co alloy deposits were investigated first in the as-deposited state on the substrates and then, by mechanically stripping them from the substrates, as self-supporting layers both without and after annealing. According to an X-ray diffraction study, a strongly textured face-centered cubic (fcc) structure was formed in the as-deposited state with an average grain size of about 10 nm. Upon annealing, the crystal structure was retained whereas the grain size increased by a factor of 3 to 5, depending on alloy composition. The zero-field resistivity decreased strongly by annealing due to the increased grain size. The annealing hardly changed the AMR below 50 at.% Co but strongly decreased it above this concentration. The composition dependence of the resistivity and the AMR of the annealed Ni-Co alloy deposits was in good quantitative agreement with the available literature data both at 13 K and at room temperature. Both transport parameters were found to exhibit a pronounced maximum in the composition range between 20 and 30 at.% Co and the data of the Ni-Co alloys fitted well to the limiting values of the pure component metals (fcc-Ni and fcc-Co). The only theoretical calculation reported formerly on fcc Ni-Co alloys yielded at T = 0 K a resistivity value smaller by a factor of 5 and an AMR value larger by a factor of about 2 than the corresponding low-temperature experimental data, although the theoretical study properly reproduced the composition dependence of both quantities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Binasch, P. Grünberg, F. Saurenbach, W. Zinn, Phys. Rev. B 39, 4828 (1989)

    Article  ADS  Google Scholar 

  2. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988)

    Article  ADS  Google Scholar 

  3. R.M. Bozorth, Ferromagnetism (Van Nostrand, New York, 1951)

    Google Scholar 

  4. T.R. McGuire, R.I. Potter, IEEE Trans. Magn. 11, 1018 (1975)

    Article  ADS  Google Scholar 

  5. R.C. O’Handley, Modern Magnetic Materials — Principles and Applications (Wiley, New York, 2000)

    Google Scholar 

  6. P. Mlejnek, M. Vopálensky, P. Ripka, Sensors and Actuators A 141, 649 (2008)

    Article  Google Scholar 

  7. J. Vèelák, P. Ripka, A. Platil, J. Kubík, P. Kašpar, Sensors and Actuators A 129, 53 (2006)

    Article  Google Scholar 

  8. P. Ripka, M. Tondra, J. Stokes, R. Beech, Sensors and Actuators 76, 225 (1999)

    Article  Google Scholar 

  9. J.M. Daughton, J. Magn. Magn. Mater. 192, 334 (1999)

    Article  ADS  Google Scholar 

  10. A. Brenner, Electrodeposition of Alloys (Academic Press, New York, 1963), Vols. I–II

    Google Scholar 

  11. W. Schwarzacher, M. Alper, R. Hart, G. Nabiyouni, I. Bakonyi, E. Tóth-Kádár, in: MRS Symp. Proc. (1997), Vol. 451, p. 347

    Google Scholar 

  12. E. Tóth-Kádár, L. Péter, T. Becsei, J. Tóth, L. Pogány, T. Tarnóczi, P. Kamasa, I. Bakonyi, G. Láng, Á. Cziráki, W. Schwarzacher, J. Electrochem. Soc. 147, 3311 (2000)

    Article  Google Scholar 

  13. I. Bakonyi, E. Tóth Kádár, J. Tóth, L.F. Kiss, L. Pogány, Á. Cziráki, C. Ulhaq-Bouillet, V. Pierron-Bohnes, A. Dinia, B. Arnold, K. Wetzig, Europhys. Lett. 58, 408 (2002)

    Article  ADS  Google Scholar 

  14. I. Bakonyi, E. Tóth Kádár, á. Cziráki, J. Tóth, L.F. Kiss, C. Ulhaq-Bouillet, V. Pierron-Bohnes, A. Dinia, B. Arnold, K. Wetzig, P. Santiago, M.-J. Yacamán, J. Electrochem. Soc. 149, C469 (2002)

    Article  Google Scholar 

  15. I. Bakonyi, J. Tóth, L.F. Kiss, E. Tóth-Kádár, L. Péter, A. Dinia, J. Magn. Magn. Mater. 269, 156 (2004)

    Article  ADS  Google Scholar 

  16. I. Kazeminezhad, W. Schwarzacher, J. Solid State Electrochem. 8, 187 (2004)

    Article  Google Scholar 

  17. I. Bakonyi, L. Péter, Z. Rolik, K. Kiss-Szabó, Z. Kupay, J. Tóth, L.F. Kiss, J. Pádár, Phys. Rev. B 70, 054427/1-10 (2004)

    Google Scholar 

  18. I. Bakonyi, L. Péter, Progr. Mater. Sci. 55, 107 (2010)

    Article  Google Scholar 

  19. V.M. Fedosyuk, O.I. Kasyutich, D. Ravinder, H.J. Blythe, J. Magn. Magn. Mater. 156, 345 (1996)

    Article  ADS  Google Scholar 

  20. Y. Jyoko, S. Kashiwabara, Y. Hayashi, J. Electrochem. Soc. 144, L193 (1997)

    Article  Google Scholar 

  21. H. Zaman, A. Yamada, H. Fukuda, Y. Ueda, J. Electrochem. Soc. 145, 565 (1998)

    Article  Google Scholar 

  22. S.H. Ge, H.H. Li, C. Li, L. Xi, W. Li, J.H. Chi, J. Phys.: Cond. Matter 12, 5905 (2000)

    Article  ADS  Google Scholar 

  23. T.G.R. Pattanaik, S.C. Kashyap, D.K. Pandya, J. Magn. Magn. Mater. 219, 309 (2000)

    Article  ADS  Google Scholar 

  24. S. Kainuma, K. Takayanagi, K. Hisatake, T. Watanabe, J. Magn. Magn. Mater. 246, 372073 (2002)

    Article  Google Scholar 

  25. R. Lopez Anton, M.L. Fernandez-Gubieda, G. Kurlandskaya, A. Garcia-Arribas, J. Magn. Magn. Mater. 254–255, 85 (2003)

    Article  Google Scholar 

  26. T. Cohen-Hyams, J.M. Plitzko, C.J.D. Hetherington, J.L. Hutchinson, J. Yahalom, W.D. Kaplan, J. Mater. Sci. 39, 5701 (2004)

    Article  ADS  Google Scholar 

  27. S. Pane, E. Gomez, E. Valles, J. Electroanal. Chem. 596, 87 (2006)

    Article  Google Scholar 

  28. S. Kenane, J. Voiron, N. Benbrahim, E. Chainet, F. Robaut, J. Magn. Magn. Mater. 297, 99 (2006)

    Article  ADS  Google Scholar 

  29. J.L. Snoek, Nature 163, 837 (1949)

    Article  ADS  Google Scholar 

  30. H.C. van Elst, Physica 25, 708 (1959)

    Article  ADS  Google Scholar 

  31. J. Smit, Physica 17, 612 (1951)

    Article  ADS  Google Scholar 

  32. T. Miyazaki, M. Oikawa, J. Magn. Magn. Mater. 97, 171 (1991)

    Article  ADS  Google Scholar 

  33. H. Kubota, S. Ishio, T. Miyazaki, Z.M. Stadnik, J. Magn. Magn. Mater. 129, 383 (1994)

    Article  ADS  Google Scholar 

  34. T. Miyazaki, H. Kubota, M. Sato, Mater. Sci. Eng. B 31, 213 (1995)

    Article  Google Scholar 

  35. T. Miyazaki, J. Kondo, H. Kubota, J. Inoue, J. Appl. Phys. 81, 5187 (1997)

    Article  ADS  Google Scholar 

  36. Y. Bian, J.O. Ström-Olsen, Z. Altounian, Y. Huai, R.W. Cochrane, J. Appl. Phys. 75, 7064 (1994)

    Article  ADS  Google Scholar 

  37. J. Banhart, H. Ebert, Europhys. Lett. 32, 517 (1995)

    Article  ADS  Google Scholar 

  38. J. Banhart, H. Ebert, A. Vernes, Phys. Rev. B 56, 10165 (1997)

    Article  ADS  Google Scholar 

  39. S. Khmelevskyi, K. Palotas, L. Szunyogh, P. Weinberger, Phys. Rev. B 68, 012402 (2003)

    Article  ADS  Google Scholar 

  40. K. Vyborny, A.V. Kovalev, J. Sinova, T. Jungwirth, Phys. Rev. B 79, 045427 (2009)

    Article  ADS  Google Scholar 

  41. S. Lowitzer, D. Ködderitzsch, H. Ebert, J.B. Staunton, Phys. Rev. B 79, 115109 (2009)

    Article  ADS  Google Scholar 

  42. Binary Alloy Phase Diagrams, edited by T.B. Massalski, 2nd edn plus updates on CD-ROM, ASM International, Materials Park, Ohio, USA, 1996

    Google Scholar 

  43. A. Bartók, A. Csík, K. Vad, Gy. Molnár, E. Tóth-Kádár, L. Péter, J. Eletrochem. Soc. 156, D253 (2009)

    Article  Google Scholar 

  44. L. Péter, J. Pádár, E. Tóth-Kádár, Á. Cziráki, P. Sóki, L. Pogány, I. Bakonyi, Electrochim. Acta 52, 3813 (2007)

    Article  Google Scholar 

  45. P. Villars, L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (American Society of Metals, Metals Park, Ohio, 1985)

    Google Scholar 

  46. J. Taylor, J. Inst. Met. 77, 585 (1950)

    Google Scholar 

  47. J. Bandyopadhyay, K.P. Gupta, Cryogenics 17, 345 (1977)

    Article  Google Scholar 

  48. J.G. Wright, J. Goddard, Phil. Mag. 11, 485 (1965)

    Article  ADS  Google Scholar 

  49. B.D. Cullity, Elements of X-ray Diffraction, 2nd edn (Addison-Wesley Publishing Company, London, 1978)

    Google Scholar 

  50. J. Smit, Physica 21, 877 (1955)

    Article  ADS  Google Scholar 

  51. M. Inagaki, M. Suzuki, Y. Iwama, U. Mizutani, Jap. J. Appl. Ph. 25, 1514 (1986)

    Article  ADS  Google Scholar 

  52. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986)

    Google Scholar 

  53. I. Bakonyi, E. Simon, B.G. Tóth, L. Péter, L.F. Kiss, Phys. Rev. B 79, 174421 (2009)

    Article  ADS  Google Scholar 

  54. The room-temperature resistivity of fcc-Co was estimated in reference [53] on the basis of the high-temperature resisitivity data reported for fcc-Co and hcp-Co by M.J. Laubitz, T. Matsumura, Can. J. Phys. 51, 1247 (1973)

    ADS  Google Scholar 

  55. J.M. Ziman, Electrons and Phonons (Clarendon Press, Oxford, 1960), Chap. VI

    MATH  Google Scholar 

  56. I. Bakonyi, E. Tóth-Kádár, J. Tóth, Á. Cziráki, B. Fogarassy, in: Nanophase Materials, edited by G.C. Hadjipanayis, R.W. Siegel, NATO ASI Series E (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994), Vol. 260, p. 423

    Google Scholar 

  57. I. Bakonyi, E. Tóth-Kádár, L. Pogány, Á. Cziráki, I. Geröcs, K. Varga-Josepovits, B. Arnold, K. Wetzig, Surf. Coat. Technol. 78, 124 (1996)

    Article  Google Scholar 

  58. E. Tóth-Kádár, I. Bakonyi, L. Pogány, Á. Cziráki, Surf. Coat. Technol. 88, 57 (1997)

    Article  Google Scholar 

  59. I. Bakonyi, E. Tóth-Kádár, J. Tóth, T. Tarnóczi, á. Cziráki, in: Processing and Properties of Nanocrystalline Materials, edited by C. Suryanarayana, J. Singh, F.H. Froes (The Minerals, Metals & Materials Society, Warrendale, Pa., USA, 1996), p. 465

    Google Scholar 

  60. I. Bakonyi, E. Tóth-Kádár, J. Tóth, L.F. Kiss, L. Pogány, Á. Cziráki, C. Ulhaq-Bouillet, V. Pierron-Bohnes, A. Dinia, B. Arnold, K. Wetzig, Europhys. Lett. 58, 408 (2002)

    Article  ADS  Google Scholar 

  61. R.W. Siegel, Ann. Rev. Mater. Sci. 21, 559 (1991)

    Article  ADS  Google Scholar 

  62. T.R. McGuire, W.D. Grobman, D.E. Eastman, AIP Conf. Proc. 18, Pt. 2, 903 (1973)

    ADS  Google Scholar 

  63. G.K. White, S.B. Woods, Phil. Trans. Roy. Soc. A 251, 273 (1959)

    Article  ADS  Google Scholar 

  64. M.J. Laubitz, T. Matsumura, P.J. Kelly, Can. J. Phys. 54, 92 (1976)

    ADS  Google Scholar 

  65. U. Mizutani, Introduction to the Electron Theory of Metals (Cambridge University Press, Cambridge, 2001)

    Book  Google Scholar 

  66. R. Caudron, J.J. Meunier, P. Costa, Solid State Commun. 14, 975 (1974)

    Article  ADS  Google Scholar 

  67. T.R. McGuire, AIP Conf. Proc. 24, 435 (1975)

    Article  ADS  Google Scholar 

  68. S.U. Jen, T.P. Chen, S.A. Chang, J. Appl. Phys. 70, 5831 (1991)

    Article  ADS  Google Scholar 

  69. J.W.F. Dorleijn, A.R. Miedema, J. Phys. F: Metal Phys. 5, 487 (1975)

    Article  ADS  Google Scholar 

  70. O. Jaoul, I.A. Campbell, A. Fert, J. Magn. Magn. Mater. 5, 23 (1977)

    Article  ADS  Google Scholar 

  71. T. Farrell, D. Greig, J. Phys. C (Proc. Phys. Soc.) 1, 1359 (1968)

    ADS  Google Scholar 

  72. P. Muth, V. Christoph, J. Phys. F: Metal Phys. 11, 2119 (1981)

    Article  ADS  Google Scholar 

  73. J.W.F. Dorleijn, A.R. Miedema, J. Phys. F: Metal Phys. 5, 1543 (1975)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Tóth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tóth, B., Péter, L., Révész, Á. et al. Temperature dependence of the electrical resistivity and the anisotropic magnetoresistance (AMR) of electrodeposited Ni-Co alloys. Eur. Phys. J. B 75, 167–177 (2010). https://doi.org/10.1140/epjb/e2010-00132-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00132-4

Keywords

Navigation