Skip to main content
Log in

Spin-phonon coupling in multiferroic manganites RMnO3: comparison of pure (R = Eu, Gd, Tb) and substituted (R = Eu1- x Y x ) compounds

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

For rare-earth manganite RMnO3 compounds spin-phonon coupling manifests itself as a phonon softening in the temperature range of the magnetically ordered phases. Within this class of materials, a continuous tuning of the lattice and thus also of the magnetic properties of multiferroic manganites is achieved by Y doping in substituted Eu1- x Y x MnO3. We compare the impact on spin-phonon coupling within this partial-substitution approach in a series of Eu1- x Y x MnO3 samples 0 x 0.5) with the effect of a complete exchange of the rare earth ions R3+ in a series of pure RMnO3 compounds (R = Eu, Gd, Tb). For this purpose we employ polarized Raman scattering in the 10–300 K temperature range. The low-temperature results show phonon softening in all investigated compounds. For decreasing R3+ radius, i.e. an increasing orthorhombic distortion and magnetic frustration, we observe in both systems a weakening of the spin-phonon coupling. For known sublattice magnetization within the MnO2-plane, quantitative results for the spin-phonon coupling constant are derived for both cases within a molecular field approximation. Our results show, that the spin-phonon coupling strength in the magnetically ordered phases of the various investigated manganites does not correlate with the magnetization pattern. Instead, the pure RMnO3 compounds and the substituted Eu1- x Y x MnO3 fit excellently within a common scheme, in which the weakening of the spin-phonon coupling reflects the degree of tilting of the MnO6 octahedra due to the orthorhombic distortion of the crystal lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.W. Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007)

    Article  ADS  Google Scholar 

  2. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55 (2003)

    Article  ADS  Google Scholar 

  3. M.N. Iliev, M.V. Abrashev, H.-G. Lee, V.N. Popov, Y.Y. Sun, C. Thomsen, R.L. Meng, C.W. Chu, Phys. Rev. B 57, 2872 (1998)

    Article  ADS  Google Scholar 

  4. T. Kimura, S. Ishihara, H. Shintani, T. Arima, K.T. Takahashi, K. Ishizaka, Y. Tokura, Phys. Rev. B 68, R060403 (2003)

    Article  ADS  Google Scholar 

  5. J. Hemberger, F. Schrettle, A. Pimenov, P. Lunkenheimer, V.Yu. Ivanov, A.A. Mukhin, A.M. Balbashov, A. Loidl, Phys. Rev. B 75, 035118 (2007)

    Article  ADS  Google Scholar 

  6. E. Granado, A. García, J.A. Sanjurjo, C. Rettori, I. Torriani, F. Prado, R.D. Sánchez, A. Caneiro, S.B. Oseroff, Phys. Rev. B 60, 11879 (1999)

    Article  ADS  Google Scholar 

  7. J. Laverdière, S. Jandl, A.A. Mukhin, V.Yu. Ivanov, V.G. Ivanov, M.N. Iliev, Phys. Rev. B 73, 214301 (2006)

    Article  ADS  Google Scholar 

  8. S. Issing, A. Pimenov, V.Yu. Ivanov, A.A. Mukhin, J. Geurts, Phys. Rev. B 81, 024304 (2010)

    Article  ADS  Google Scholar 

  9. J. Agostinho Moreira, A. Almeida, W.S. Ferreira, J.E. Araújo, A.M. Pereira, M.R. Chaves, J. Kreisel, S.M.F. Vilela, P.B. Tavares, Phys. Rev. B 81, 054447 (2010)

    Article  ADS  Google Scholar 

  10. W.S. Ferreira, J. Agostinho Moreira, A. Almeida, M.R. Chaves, J.P. Araújo, J.B. Oliveira, J.M. Machado Da Silva, M.A. Sa, T.M. Mendonca, P. Simeao Carvalho, J. Kreisel, J.L. Ribeiro, L.G. Vieira, P.B. Tavares, S. Mendonca, Phys. Rev. B 79, 054303 (2009)

    Article  ADS  Google Scholar 

  11. A.M. Balbashov, S.G. Karabashev, Ya.M. Mukovskiy, S.A. Zverkov, J. Crys. Grow. 167, 365 (1996)

    Article  ADS  Google Scholar 

  12. J. Hemberger, S. Lobina, H.-A. Krug von Nidda, N. Tristan, V.Yu. Ivanov, A.A. Mukhin, A.M. Balbashov, A. Loidl, Phys. Rev. B 70, 024414 (2004)

    Article  ADS  Google Scholar 

  13. A. Pimenov, A.A. Mukhin, V.Yu. Ivanov, V.D. Travkin, A.M. Balbashov, A. Loidl, Nat. Phys. 2, 97 (2006)

    Article  Google Scholar 

  14. S. Koritnig, Landolt-Börnstein: Numerical Data and Functional Relationsships in Science and Technology, Part 4, 6th edn. (Springer, Berlin, 1955), Vol. 1

  15. P. Yu, M. Cardona, Fundamentals of Semiconductors, 3rd edn. (Springer, New York, 2001)

  16. M.N. Iliev, M.V. Abrashev, J. Laverdiere, S. Jandl, M.M. Gospodinov, Y.-Q. Wang, Y.-Y. Sun, Phys. Rev. B 73, 064302 (2006)

    Article  ADS  Google Scholar 

  17. S. Issing, F. Fuchs, C. Ziereis, E. Batke, A. Pimenov, Y.Vu. Ivanov, A.A. Mukhin, J. Geurts, Eur. Phys. J. B 73, 353 (2010)

    Article  ADS  Google Scholar 

  18. M. Balkanski, R.F. Wallis, E. Haro, Phys. Rev. B 28, 1928 (1983)

    Article  ADS  Google Scholar 

  19. P. Kumar, S. Saha, D.V.S. Muthu, J.R. Sahu, A.K. Sood, C.N.R. Rao, J. Phys.: Condens. Matter 22, 115403 (2010)

    Article  ADS  Google Scholar 

  20. J. Blasco, C. Ritter, J. García, J.M. de Teresa, J. Pérez-Cacho, M.R. Ibarra, Phys. Rev. B 62, 5609 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Issing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Issing, S., Pimenov, A., Ivanov, Y. et al. Spin-phonon coupling in multiferroic manganites RMnO3: comparison of pure (R = Eu, Gd, Tb) and substituted (R = Eu1- x Y x ) compounds. Eur. Phys. J. B 78, 367–372 (2010). https://doi.org/10.1140/epjb/e2010-10701-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-10701-0

Keywords

Navigation