Skip to main content

Advertisement

Log in

Investigating the topology of interacting networks

Theory and application to coupled climate subnetworks

  • Regular Article
  • Focus Section on Frontiers in Network Science: Advances and Applications
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Network theory provides various tools for investigating the structural or functional topology of many complex systems found in nature, technology and society. Nevertheless, it has recently been realised that a considerable number of systems of interest should be treated, more appropriately, as interacting networks or networks of networks. Here we introduce a novel graph-theoretical framework for studying the interaction structure between subnetworks embedded within a complex network of networks. This framework allows us to quantify the structural role of single vertices or whole subnetworks with respect to the interaction of a pair of subnetworks on local, mesoscopic and global topological scales. Climate networks have recently been shown to be a powerful tool for the analysis of climatological data. Applying the general framework for studying interacting networks, we introduce coupled climate subnetworks to represent and investigate the topology of statistical relationships between the fields of distinct climatological variables. Using coupled climate subnetworks to investigate the terrestrial atmosphere’s three-dimensional geopotential height field uncovers known as well as interesting novel features of the atmosphere’s vertical stratification and general circulation. Specifically, the new measure “cross-betweenness” identifies regions which are particularly important for mediating vertical wind field interactions. The promising results obtained by following the coupled climate subnetwork approach present a first step towards an improved understanding of the Earth system and its complex interacting components from a network perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Albert, A.L. Barabasi, Rev. Mod. Phys. 74, 47 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. M.E.J. Newman, SIAM Rev. 45, 167 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Phys. Rep. 424, 175 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  4. F.A. Rodrigues, L. da F. Costa, G. Travieso, P.R. Villas Boas, Adv. Phys. 56, 167 (2005)

    Google Scholar 

  5. A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Phys. Rep. 469, 93 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  6. C.S. Zhou, L. Zemanová, G. Zamora-Lopéz, C.C. Hilgetag, J. Kurths, Phys. Rev. Lett. 97, 238103 (2006)

    Article  ADS  Google Scholar 

  7. C.S. Zhou, L. Zemanová, G. Zamora-López, C.C. Hilgetag, J. Kurths, New J. Phys. 9, 178 (2007)

    Article  ADS  Google Scholar 

  8. E. Barreto, B. Hunt, E. Ott, P. So, Phys. Rev. E 77, 036107 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. P. So, B.C. Cotton, E. Barreto, Chaos 18, 037114 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Vespignani, Nature 464, 984 (2010)

    Article  ADS  Google Scholar 

  11. R. Parshani, S. Buldyrev, S. Havlin, Phys. Rev. Lett. 105, 048701 (2010)

    Article  ADS  Google Scholar 

  12. S.V. Buldyrev, R. Parshani, G. Paul, H.E. Stanley, S. Havlin, Nature 464, 1025 (2010)

    Article  ADS  Google Scholar 

  13. S. Fortunato, Phys. Rep. 486, 75 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Kurant, P. Thiran, Phys. Rev. Lett. 96, 138701 (2006)

    Article  ADS  Google Scholar 

  15. M. Kurant, P. Thiran, Phys. Rev. E 74, 036114 (2006)

    Article  ADS  Google Scholar 

  16. M. Kurant, P. Thiran, P. Hagmann, Phys. Rev. E 76, 026103 (2007)

    Article  ADS  Google Scholar 

  17. J.F. Donges, Y. Zou, N. Marwan, J. Kurths, Europhys. Lett. 87, 48007 (2009)

    Article  ADS  Google Scholar 

  18. J.F. Donges, Y. Zou, N. Marwan, J. Kurths, Eur. Phys. J. ST 174, 157 (2009)

    Google Scholar 

  19. R.V. Donner, T. Sakamoto, N. Tanizuka, in Nonlinear Time Series Analysis in the Geosciences: Applications in Climatology, Geodynamics and Solar-Terrestrial Physics, edited by R.V. Donner, S.M. Barbosa (Springer, 2008), pp. 125–154

  20. A. Gozolchiani, K. Yamasaki, O. Gazit, S. Havlin, Europhys. Lett. 83, 28005 (2008)

    Article  ADS  Google Scholar 

  21. A.A. Tsonis, P.J. Roebber, Physica A 333, 497 (2004)

    Article  ADS  Google Scholar 

  22. A.A. Tsonis, K.L. Swanson, Phys. Rev. Lett. 100, 228502 (2008)

    Article  ADS  Google Scholar 

  23. A.A. Tsonis, K.L. Swanson, G. Wang, J. Climate 21, 2990 (2008)

    Article  ADS  Google Scholar 

  24. K. Yamasaki, A. Gozolchiani, S. Havlin, Phys. Rev. Lett. 100, 228501 (2008)

    Article  ADS  Google Scholar 

  25. H.J. Schellnhuber, Nature 402, C19 (1999)

    Article  Google Scholar 

  26. T.M. Lenton, H. Held, J.W. Hall, E. Kriegler, W. Lucht, S. Rahmstorf, H.J. Schellnhuber, Proc. Natl. Acad. Sci. USA 105, 1786 (2008)

    Article  MATH  ADS  Google Scholar 

  27. R.V. Donner, S. Barbosa, J. Kurths, N. Marwan, Eur. Phys. J. ST 174, 1 (2009)

    Google Scholar 

  28. T. Schneider, Annu. Rev. Earth Planet. Sci. 34, 655 (2006)

    Article  ADS  Google Scholar 

  29. D. Hartmann, J. Meteor. Soc. J. B 85, 123 (2007)

    Article  Google Scholar 

  30. G. Zamora-López, C.S. Zhou, J. Kurths, Chaos 19, 015117 (2009)

    Article  ADS  Google Scholar 

  31. G. Zamora-López, C.S. Zhou, J. Kurths, Front. Neuroinformatics 4, 1 (2010)

    Google Scholar 

  32. L.C. Freeman, Soc. Networks 1, 215 (1979)

    Article  Google Scholar 

  33. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  34. J. Heitzig, J.F. Donges, Y. Zou, N. Marwan, J. Kurths arXiv:1101.4757v1 [physics.data-an] (2011)

  35. P.L. Flom, S.R. Friedman, S. Strauss, A. Neaigus, Connections 26, 62 (2004)

    Google Scholar 

  36. U. Brandes, Soc. Networks 30, 136 (2008)

    Article  ADS  Google Scholar 

  37. M.E.J. Newman, M. Girvan, Phys. Rev. E 69, 026113 (2004)

    Article  ADS  Google Scholar 

  38. J. Kutzbach, J. Appl. Meteorol. 6, 791 (1967)

    Article  ADS  Google Scholar 

  39. J. Wallace, D. Gutzler, Mon. Weather Rev. 109, 784 (1981)

    Article  ADS  Google Scholar 

  40. R. Vautard, M. Ghil, Physica D 35, 395 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. M. Mudelsee, Climate Time Series Analysis: Classical Statistical and Bootstrap Methods, Atmospheric and Oceanographic Sciences Library (Springer, 2010), Vol. 42

  42. C.S. Bretherton, C. Smith, J.M. Wallace, J. Climate 5, 541 (1992)

    Article  ADS  Google Scholar 

  43. M.L. Salby, Fundamentals of Atmospheric Physics (Academic Press San Diego, CA, 1996)

  44. J. Pedlosky, Geophysical fluid dynamics (Springer, 1979)

  45. S. Bialonski, M.T. Horstmann, K. Lehnertz, Chaos 20, 013134 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  46. R.V. Donner, Y. Zou, J.F. Donges, N. Marwan, J. Kurths, Phys. Rev. E 81, 015101 (2010)

    Article  ADS  Google Scholar 

  47. R.V. Donner, Y. Zou, J.F. Donges, N. Marwan, J. Kurths, New J. Phys. 12, 033025 (2010)

    Article  ADS  Google Scholar 

  48. N. Marwan, J.F. Donges, Y. Zou, R.V. Donner, J. Kurths, Phys. Lett. A 373, 4246 (2009)

    Article  ADS  Google Scholar 

  49. R. Kistler, E. Kalnay, W. Collins, S. Saha, G. White, J. Woollen, M. Chelliah, W. Ebisuzaki, M. Kanamitsu, V. Kousky et al., B. Am. Meteorol. Soc. 82, 247 (2001)

    Article  Google Scholar 

  50. R. Heikes, D.A. Randall, Mon. Weather Rev. 123, 1862 (1995)

    Article  ADS  Google Scholar 

  51. P.W. Jones, T. Diyision, A user’s guide for SCRIP: A spherical coordinate remapping and interpolation package (Los Alamos National Laboratory, Los Alamos, New Mexico, USA, 1998)

  52. D. Majewski, D. Liermann, P. Prohl, B. Ritter, M. Buchhold, T. Hanisch, G. Paul, W. Wergen, J. Baumgardner, Mon. Weather Rev. 130, 319 (2002)

    Article  ADS  Google Scholar 

  53. M.A. Kramer, U.T. Eden, S.S. Cash, E.D. Kolaczyk, Phys. Rev. E 79, 061916 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  54. E. Langford, N. Schwertman, M. Owens, Am. Stat. 55, 322 (2001)

    Article  MathSciNet  Google Scholar 

  55. A. Radebach, Master’s thesis, Humboldt University Berlin, 2010

  56. H. Riehl, J. Malkus, Geophysica 6, 503 (1958)

    Google Scholar 

  57. D. Andrews, J. Holton, C. Leovy, Middle atmosphere dynamics (Academic Press San Diego, CA, 1987), ISBN 0120585766

  58. J.R. Holton, An Introduction to Dynamic Meteorology, 4th edn. (Elsevier, 2004)

  59. G. Csárdi, T. Nepusz, InterJournal CX.18, 1695 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Donges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donges, J.F., Schultz, H.C.H., Marwan, N. et al. Investigating the topology of interacting networks. Eur. Phys. J. B 84, 635–651 (2011). https://doi.org/10.1140/epjb/e2011-10795-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-10795-8

Keywords

Navigation