Skip to main content
Log in

High performance silicene nanoribbon field effect transistors with current saturation

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate field effect transistors (FETs) based on semiconducting armchair-edged silicene nanoribbons (ASiNRs) by using ab initio quantum transport calculations. These FETs have high performance with an I on/I off ratio of over 106 and a subthreshold swing as small as 90 mV/decade. Impressively, the output characteristic shows a saturation behavior. The drain-current saturation is an advantage with respect to device speed, but it’s usually absent in carbon-based (e.g., graphene, graphene nanoribbons, carbon nanotubes, and organic single-molecule) FETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.E. Moore, in Tech. Dig. ISSCC (IEEE, 2003), pp. 20−23

  2. F. Schwierz, H. Wong, J.J. Liou, Nanometer CMOS (Pan Stanford, 2010)

  3. F. Schwierz, Nat. Nanotechnol. 5, 487 (2010)

    Article  ADS  Google Scholar 

  4. Y. Taur, T.H. Ning, Fundamentals of Modern VLSI Devices (Cambridge University Press, 1998)

  5. D.J. Frank, Y. Taur, H.S.P. Wong, IEEE Electron Dev. Lett. 19, 385 (1998)

    Article  ADS  Google Scholar 

  6. P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012)

    Article  ADS  Google Scholar 

  7. S. Cahangirov, M. Topsakal, E. Akturk, H. Sahin, S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009)

    Article  ADS  Google Scholar 

  8. H. Sahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R.T. Senger, S. Ciraci, Phys. Rev. B 80, 155453 (2009)

    Article  ADS  Google Scholar 

  9. K.R. Knox, S. Wang, A. Morgante, D. Cvetko, A. Locatelli, T.O. Mentes, M.A. Nino, P. Kim, R.M. Osgood Jr., Phys. Rev. B 78, 201408 (2008)

    Article  ADS  Google Scholar 

  10. S. Lebegue, O. Eriksson, Phys. Rev. B 79, 115409 (2009)

    Article  ADS  Google Scholar 

  11. G.G. Guzman-Verri, L.C. Lew Yan Voon, Phys. Rev. B 76, 075131 (2007)

    Article  ADS  Google Scholar 

  12. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  13. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  14. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  15. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, A.K. Geim, Phys. Rev. Lett. 100, 016602 (2008)

    Article  ADS  Google Scholar 

  16. B. Aufray, A. Kara, S. Vizzini, H. Oughaddou, C. Leandri, B. Ealet, G. Le Lay, Appl. Phys. Lett. 96, 183102 (2010)

    Article  ADS  Google Scholar 

  17. P. De Padova, C. Quaresima, B. Olivieri, P. Perfetti, G. Le Lay, Appl. Phys. Lett. 98, 081909 (2011)

    Article  ADS  Google Scholar 

  18. P. De Padova et al., Appl. Phys. Lett. 96, 261905 (2010)

    Article  ADS  Google Scholar 

  19. S. Cahangirov, M. Topsakal, S. Ciraci, Phys. Rev. B 81, 195120 (2010)

    Article  ADS  Google Scholar 

  20. Y.-L. Song, Y. Zhang, J.-M. Zhang, D.-B. Lu, Appl. Surf. Sci. 256, 6313 (2010)

    Article  ADS  Google Scholar 

  21. X.F. Guo et al., Proc. Natl. Acad. Sci. USA 103, 11452 (2006)

    Article  ADS  Google Scholar 

  22. X.F. Guo et al., Science 311, 356 (2006)

    Article  ADS  Google Scholar 

  23. X.F. Guo, S.X. Xiao, M. Myers, Q. Miao, M.L. Steigerwald, C. Nuckolls, Proc. Natl. Acad. Sci. USA 106, 691 (2009)

    Article  ADS  Google Scholar 

  24. P.F. Qi, A. Javey, M. Rolandi, Q. Wang, E. Yenilmez, H.J. Dai, J. Am. Chem. Soc. 126, 11774 (2004)

    Article  Google Scholar 

  25. L.C. Cao, S.Y. Chen, D.C. Wei, Y.Q. Liu, L. Fu, G. Yu, H.M. Liu, X.Y. Liu, D.X. Wu, J. Mater. Chem. 20, 2305 (2010)

    Article  Google Scholar 

  26. J.B. Lee, P.C. Chang, J.A. Liddle, V. Subramanian, IEEE Trans. Electron. Dev. 52, 1874 (2005)

    Article  ADS  Google Scholar 

  27. L. Wang, D. Fine, T.H. Jung, D. Basu, H. von Seggern, A. Dodabalapur, Appl. Phys. Lett. 85, 1772 (2004)

    Article  ADS  Google Scholar 

  28. H. Li et al., J. Phys. Chem. C 114, 15816 (2010)

    Article  ADS  Google Scholar 

  29. H. Okamoto, Y. Sugiyama, H. Nakano, Chem. Eur. J. 17, 9864 (2011)

    Article  Google Scholar 

  30. Y. Cao, M.L. Steigerwald, C. Nuckolls, X.F. Guo, Adv. Mater. 22, 20 (2010)

    Article  Google Scholar 

  31. A.D. Franklin, Z.H. Chen, Nat. Nanotechnol. 5, 858 (2010)

    Article  ADS  Google Scholar 

  32. Y.-M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.-Y. Chiu, A. Grill, P. Avouris, Science 327, 662 (2010)

    Article  ADS  Google Scholar 

  33. Y.-M. Lin, K.A. Jenkins, A. Valdes-Garcia, J.P. Small, D.B. Farmer, P. Avouris, Nano Lett. 9, 422 (2009)

    Article  ADS  Google Scholar 

  34. J.S. Moon et al., IEEE Electron Dev. Lett. 30, 650 (2009)

    Article  ADS  Google Scholar 

  35. Q. Yan, B. Huang, J. Yu, F. Zheng, J. Zang, J. Wu, B.-L. Gu, F. Liu, W. Duan, Nano Lett. 7, 1469 (2007)

    Article  ADS  Google Scholar 

  36. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  37. V. Milman, B. Winkler, J.A. White, C.J. Pickard, M.C. Payne, E.V. Akhmatskaya, R.H. Nobes, Int. J. Quantum Chem. 77, 895 (2000)

    Article  Google Scholar 

  38. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  39. M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002)

    Article  ADS  Google Scholar 

  40. J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001)

    Article  ADS  Google Scholar 

  41. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  42. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)

  43. M. Klintenberg, S. Lebegue, M.I. Katsnelson, O. Eriksson, Phys. Rev. B 81, 085433 (2010)

    Article  ADS  Google Scholar 

  44. L. Yang, M.L. Cohen, S.G. Louie, Nano Lett. 7, 3112 (2007)

    Article  ADS  Google Scholar 

  45. G. Fiori, G. Iannaccone, IEEE Trans. Nanotechnol. 6, 524 (2007)

    Article  ADS  Google Scholar 

  46. J.-P. Colinge et al., Nat. Nanotechnol. 5, 225 (2010)

    Article  ADS  Google Scholar 

  47. L. Yi-Hsien, K. Po-Yi, W. Yi-Hong, C. Yi-Hsuan, C. Tien-Sheng, IEEE Electron Dev. Lett. 32, 173 (2011)

    Article  ADS  Google Scholar 

  48. F. Sacconi, M. Persson, M. Povolotskyi, L. Latessa, A. Pecchia, A. Gagliardi, A. Balint, T. Fraunheim, A. Di Carlo, J. Comput. Electron. 6, 329 (2007)

    Article  Google Scholar 

  49. L. Wei-Ting, W. Chia-Wei, L. Cheng-Chih, L. Pei-Wen, IEEE Trans. Electron. Dev. 58, 1336 (2011)

    Article  ADS  Google Scholar 

  50. K.S. Yi, K. Trivedi, H.C. Floresca, H. Yuk, W. Hu, M.J. Kim, Nano Lett. 11, 5465 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Wang, L., Liu, Q. et al. High performance silicene nanoribbon field effect transistors with current saturation. Eur. Phys. J. B 85, 274 (2012). https://doi.org/10.1140/epjb/e2012-30220-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30220-2

Keywords

Navigation