Skip to main content

Advertisement

Log in

Structural evolution of the Tropical Pacific climate network

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A new methodology based on information theory is used to explore the evolution of the surface air temperature climate network over the Tropical Pacific region. Topological changes over the period 1948–2009 are investigated using windows of one year duration. Alternating states of lower/higher efficiency in information transfer are consistently captured during the opposing phases of ENSO (i.e., El Niño and La Niña years). This cyclic information transfer behavior reflects a higher climatic stability for La Niña years which is in good agreement with current observations. In addition, after the 1976/77 climate shift, a change towards more frequent conditions of decreased information transfer efficiency is detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.S. Halpert, C.F. Ropelewski, J. Climate 5, 577 (1992)

    Article  ADS  Google Scholar 

  2. M.J. McPhaden, in Encyclopedia of Global Environmental Change, The Earth system: physical and chemical dimensions of global environmental change, edited by M.C. MacCracken, J.S. Perry (Wiley, 2003), Vol. 1, pp. 353–370

  3. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D. Hwang, Phys. Rep. 424, 175 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  4. A.A. Tsonis, K.L. Swanson, G. Wang, J. Climate 21, 2990 (2008)

    Article  ADS  Google Scholar 

  5. K. Yamasaki, A. Gozolchiani, S. Havlin, Prog. Theor. Phys. Suppl. 179, 178 (2009)

    Article  ADS  MATH  Google Scholar 

  6. A.A. Tsonis, K.L. Swanson, P.J. Roebber, Bull. Am. Meteorol. Soc. 87, 585 (2006)

    Article  ADS  Google Scholar 

  7. J.F. Donges, Y. Zou, N. Marwan, J. Kurths, Eur. Phys. J. Special Top. 174, 157 (2009)

    Article  ADS  Google Scholar 

  8. A.A. Tsonis, P.J. Roebber, Phys. A 333, 497 (2004)

    Article  Google Scholar 

  9. A. Tsonis, G. Wang, K. Swanson, F. Rodrigues, L. Costa, Clim. Dyn. 37, 933 (2011)

    Article  Google Scholar 

  10. J.F. Donges, Y. Zou, N. Marwan, J. Kurths, Europhys. Lett. 87, 48007 (2009)

    Article  ADS  Google Scholar 

  11. J.F. Donges, H.C.H. Schultz, N. Marwan, Y. Zou, J. Kurths, Eur. Phys. J. B: Condens. Matter Complex Syst. 84, 635 (2011)

    Article  Google Scholar 

  12. K. Yamasaki, A. Gozolchiani, S. Havlin, Phys. Rev. Lett. 100, 228501 (2008)

    Article  ADS  Google Scholar 

  13. N. Malik, B. Bookhagen, N. Marwan, J. Kurths, Clim. Dyn. 39, 971 (2012)

    Article  Google Scholar 

  14. M. Barreiro, A. Marti, C. Masoller, Chaos 21, 013101 (2011)

    Article  ADS  Google Scholar 

  15. K. Steinhaeuser, A.R. Ganguly, N.V. Chawla, Clim. Dyn. 39, 889 (2012)

    Article  Google Scholar 

  16. A. Gozolchiani, K. Yamasaki, O. Gazit, S. Havlin, Europhys. Lett. 83, 28005 (2008)

    Article  ADS  Google Scholar 

  17. L.C. Carpi, O.A. Rosso, P.M. Saco, M.G. Ravetti, Phys. Lett. A 375, 801 (2011)

    Article  ADS  MATH  Google Scholar 

  18. A.S. Taschetto, M.H. England, J. Climate 22, 3167 (2009)

    Article  ADS  Google Scholar 

  19. A.A. Tsonis, K.L. Swanson, Phys. Rev. Lett. 100, 228502 (2008)

    Article  ADS  Google Scholar 

  20. E. Kalnay et al., Bull. Amer. Meteorol. Soc. 77, 437 (1996)

    Article  ADS  Google Scholar 

  21. K. Steinhaeuser, N.V. Chawla, A.R. Ganguly, in Proceedings of the Third International Workshop on Knowledge Discovery from Sensor Data, SensorKDD ’09 (ACM, New York, NY, 2009), pp. 23–31

  22. V. Latora, M. Marchiori, Phys. Rev. Lett. 87, 198701 (2001)

    Article  ADS  Google Scholar 

  23. F. Österreicher, I. Vajda, Ann. Inst. Statist. Math. 55, 639 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. D.M. Endres, J.E. Schindelin, IEEE Trans. Inf. Theory 49, 1858 (2003)

    Article  MathSciNet  Google Scholar 

  25. T.M. Smith, R.W. Reynolds, T.C. Peterson, J. Lawrimore, J. Climate 21, 2283 (2008)

    Article  ADS  Google Scholar 

  26. H.L. Ren, F.F. Jin, Geophys. Res. Lett. 38, L04704 (2011)

    Article  Google Scholar 

  27. T. Lee, M.J. McPhaden, Geophys. Res. Lett. 37, L14603 (2010)

    Article  ADS  Google Scholar 

  28. S.A. Hill, D. Braha, Phys. Rev. E 82, 046105 (2010)

    Article  ADS  Google Scholar 

  29. E. Hackert, J. Ballabrera-Poy, A.J. Busalacchi, R.H. Zhang, R. Murtugudde, J. Geophys. Res. 112, C01005 (2007)

    Article  ADS  Google Scholar 

  30. M.J. McPhaden, Adv. Geosci. 14, 219 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P.M. Saco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpi, L., Saco, P., Rosso, O. et al. Structural evolution of the Tropical Pacific climate network. Eur. Phys. J. B 85, 389 (2012). https://doi.org/10.1140/epjb/e2012-30413-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30413-7

Keywords

Navigation