Skip to main content

Advertisement

Log in

An epidemic model of rumor diffusion in online social networks

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

So far, in some standard rumor spreading models, the transition probability from ignorants to spreaders is always treated as a constant. However, from a practical perspective, the case that individual whether or not be infected by the neighbor spreader greatly depends on the trustiness of ties between them. In order to solve this problem, we introduce a stochastic epidemic model of the rumor diffusion, in which the infectious probability is defined as a function of the strength of ties. Moreover, we investigate numerically the behavior of the model on a real scale-free social site with the exponent γ = 2.2. We verify that the strength of ties plays a critical role in the rumor diffusion process. Specially, selecting weak ties preferentially cannot make rumor spread faster and wider, but the efficiency of diffusion will be greatly affected after removing them. Another significant finding is that the maximum number of spreaders max(S) is very sensitive to the immune probability μ and the decay probability v. We show that a smaller μ or v leads to a larger spreading of the rumor, and their relationships can be described as the function ln(max(S)) = Av + B, in which the intercept B and the slope A can be fitted perfectly as power-law functions of μ. Our findings may offer some useful insights, helping guide the application in practice and reduce the damage brought by the rumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Belen, Ph.D. thesis, School of Mathematical Sciences, University of Adelaide, 2008, available at http://hdl.handle.net/2440/49472

  2. E. Abrahamson, Acad. Manage. Rev. 16, 586 (1991)

    Google Scholar 

  3. A.V. Banerjee, Quart. J. Econ. 107, 797 (1992)

    Article  Google Scholar 

  4. S. Bikhchandani, D. Hirshleifer, I. Welch, J. Econ. Perspect. 12, 151 (1998)

    Article  Google Scholar 

  5. F. Bass, Manage. Sci. 15, 215 (1969)

    Article  MATH  Google Scholar 

  6. E. Rogers, The Diffusion of Innovations, 4th edn. (Free Press, New York, 1995)

  7. D. Godes, D. Mayzlin, Marketing Science 23, 545 (2004)

    Article  Google Scholar 

  8. M. Kosfeld, J. Math. Econ. 41, 646 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. A.V. Banerjee, Rev. Econ. Stud. 60, 309 (1993)

    Article  MATH  Google Scholar 

  10. K. Dietz, J.R. Stat. Soc. 130, 505 (1967)

    MathSciNet  Google Scholar 

  11. D.J. Daley, D.G. Kendal, J. Inst. Math. Appl. 1, 42 (1965)

    Article  MathSciNet  Google Scholar 

  12. D.J. Daley, J. Gani, Epidemic Modeling (Cambridge University Press, Cambridge, 2000)

  13. D.H. Zanette, Phys. Rev. E 65, 041908 (2002)

    Article  ADS  Google Scholar 

  14. Y. Moreno, M. Nekovee, A. Vespignani, Phys. Rev. E 69, 055101 (R) (2004)

  15. Y. Moreno, M. Nekovee, A.F. Pacheco, Phys. Rev. E 69, 066130 (2004)

    Article  ADS  Google Scholar 

  16. M. Nekovee, Y. Moreno, G. Bianconic, M. Marsili, Physica A 374, 457 (2007)

    Article  ADS  Google Scholar 

  17. J. Zhou, Z.H. Liu, B.W. Li, Phys. Lett. A 368, 458 (2007)

    Article  ADS  Google Scholar 

  18. D. Trpevski, W.K.S. Tang, L. Kocarev, Phys. Rev. E 81, 056102 (2010)

    Article  ADS  Google Scholar 

  19. A. Mislove, M. Marcon, K.P. Gummadi, P. Druschel, B. Bhattacharjee, in Proceedings of the 7th ACM SIGCOMM conference on Internet measurement, San Diego, 2007, p. 29

  20. J.C. Zhao, J.J. Wu, K. Xu, Phys. Rev. E 82, 016105 (2010)

    Article  ADS  Google Scholar 

  21. M. Kitsak, L.K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H.E. Stanley, H.A. Makse, Nat. Phys. 6, 888 (2010)

    Article  Google Scholar 

  22. L.Y. Lü, Y.C. Zhang, C.H. Yeung, T. Zhou, PLoS One 6, e21202 (2011)

    Article  ADS  Google Scholar 

  23. D.B. Chen, L.Y. Lü, M.S. Shang, Y.C. Zhang, T. Zhou, Physica A 391, 1777 (2012)

    ADS  Google Scholar 

  24. M.S. Granovetter, Am. J. Sociol. 78, 1360 (1973)

    Article  Google Scholar 

  25. M.S. Granovetter, The Strength of Weak ties (University of Chicago Press, Chicago, 1974)

  26. M.S. Granovetter, The strength of weak ties: A Network theory revisited In Social Structure and Network Analysis edited by P. Marsden, N. Lin (Beverly Hills, CA: Sage, 1982), p. 105

  27. G. Lai, O. Wong, Soc. Netw. 24, 49 (2002)

    Article  Google Scholar 

  28. P. Csermely, Trends Biochem. Sci. 29, 331 (2004)

    Article  Google Scholar 

  29. L.Y. Lü, T. Zhou, Europhys. Lett. 89, 18001 (2010)

    Article  ADS  Google Scholar 

  30. D. Centola, M. Macy, Am. J. Social. 113, 702 (2007)

    Article  Google Scholar 

  31. R. Zafarani, H. Liu, Social computing data repository at ASU, in School of Computing, Informatics and Decision Systems Engineering (Arizona State University, 2009), http://socialcomputing.asu.edu

  32. G. Yan, T. Zhou, J. Wang, Z.Q. Fu, B.H. Wang, Chin. Phys. Lett. 22, 513 (2005)

    ADS  Google Scholar 

  33. J.P. Onnela, J. Saramaki, J. Hyvonen, G. Szabo, D. Lazer, K. Kaski, J. Kertesz, A.L. Barabasi, Proc. Natl. Acad. Sci. 104, 7332 (2007)

    Article  ADS  Google Scholar 

  34. H. Memic, in Proceedings of the International Conference on Information Technology Interfaces, Dubrovnik, 2009, p. 273

  35. J.B. Holthoefer, Y. Moreno, Phys. Rev. E 85, 026116 (2012)

    Article  ADS  Google Scholar 

  36. J. Wilms, M. Troyer, F. Verstraete, J. Stat. Mech. 10, P10011 (2011)

    Article  Google Scholar 

  37. Z.M. Yang, T. Zhou, Phys. Rev. E 85, 056106 (2012)

    Article  ADS  Google Scholar 

  38. A.X. Cui, Z.M. Yang, T. Zhou, arXiv:1204.0100v1[physics.soc-ph], (2012)

  39. L.Y. Lü, T. Zhou, Physica A 390, 1150 (2011)

    Article  ADS  Google Scholar 

  40. D.R. He, Z.H. Liu, B.H. Wang, Complex System and Complex Networks (Higher Education Press, Beijing, 2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-Jun Cheng or Yun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, JJ., Liu, Y., Shen, B. et al. An epidemic model of rumor diffusion in online social networks. Eur. Phys. J. B 86, 29 (2013). https://doi.org/10.1140/epjb/e2012-30483-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30483-5

Keywords

Navigation