Skip to main content
Log in

Rearrangement of martensitic variants in Ni2MnGa studied with the phase-field method

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A phase-field model is introduced to simulate the magnetic shape memory effect, i.e. the solid-state rearrangement of the boundaries of a martensitic microstructure using an external magnetic field, in the shape memory material Ni2MnGa. The model is derived from an existing phase-field model that has proven well in several applications in materials science, based on the interpolation of free energies. The micromagnetic and elastic energy contributions entering the constitutive free energy functional are given, and the coupled kinetic equations of motion for the phase fields that describe the microstructure geometry, the spontaneous magnetization and the elastic displacement field are derived from the principle of minimization of free energy. The concept of representative volume elements is applied for the microstructure simulations carried out to analyze the material behavior, and the relevant boundary conditions are discussed. Stress vs. strain and strain vs. applied magnetic field curves are shown for Ni2MnGa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ullakko, J.K. Huang, C. Kantner, R.C. O’Handley, V.V. Kokorin, Appl. Phys. Lett. 69, 1966 (1996)

    Article  ADS  Google Scholar 

  2. P. Entel, V.D. Buchelnikov, M.E. Gruner, A. Hucht, V.V. Khovailo, S.K. Nayak, A.T. Zayak, Mater. Sci. Forum 583, 21 (2008)

    Article  Google Scholar 

  3. S.J. Murray, M. Marioni, S.M. Allen, R.C. O’Handley, Appl. Phys. Lett. 77, 886 (2000)

    Article  ADS  Google Scholar 

  4. A. Sozinov, A.A. Likhachev, N. Lanska, K. Ullakko, Appl. Phys. Lett. 80, 1746 (2002)

    Article  ADS  Google Scholar 

  5. M.L. Richard, J. Feuchtwanger, S.M. Allen, R.C. O’Handley, P. Lázpita, J.M. Barandiaran, Metall. Mater. Trans. A 38, 777 (2007)

    Article  Google Scholar 

  6. K. Bhattacharya, Microstructure of Martensite – Why it forms and how it gives rise to the Shape-Memory Effect (Oxford University Press, New York, 2003)

  7. J. Slutsker, A.L. Roytburd, J. Mech. Phys. Solids 47, 2299 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Slutsker, A.L. Roytburd, J. Mech. Phys. Solids 47, 2331 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Slutsker, A.L. Roytburd, J. Mech. Phys. Solids 49, 1795 (2001)

    Article  MATH  Google Scholar 

  10. Y. Wang, A.G. Khachaturyan, Mater. Sci. Eng. A 438, 55 (2006)

    Article  Google Scholar 

  11. V.I. Levitas, D.-W. Lee, D.L. Preston, Int. J. Plast. 26, 395 (2010)

    Article  MATH  Google Scholar 

  12. J. Kundin, D. Raabe, H. Emmerich, J. Mech. Phys. Solids 59, 2082 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  13. J.X. Zhang, L.Q. Chen, Phil. Mag. Lett. 85, 531 (2005)

    ADS  Google Scholar 

  14. Y.M. Jin, Acta. Mater. 57, 2488 (2009)

    Article  Google Scholar 

  15. P.P. Wu, X.Q. Ma, J.X. Zhang, L.Q. Chen, J. Appl. Phys. 104, 073906 (2008)

    Article  ADS  Google Scholar 

  16. P.P. Wu, X.Q. Ma, J.X. Zhang, L.Q. Chen, Phil. Mag. 91, 2112 (2011)

    ADS  Google Scholar 

  17. W.F. Brown Jr., Micromagnetics (Interscience Publisher, New York, 1963)

  18. B. Nestler, H. Garcke, B. Stinner, Phys. Rev. E 71, 041609 (2005)

    Article  ADS  Google Scholar 

  19. E.K.H. Salje, Phase Transitions in Ferroelastic and Co-elastic Crystals, 2nd edn. (Cambridge University Press, Cambridge, 1993)

  20. C. Mennerich, F. Wendler, M. Jainta, B. Nestler, Arch. Mech. 63, 1845 (2011)

    MathSciNet  Google Scholar 

  21. H. Garcke, B. Nestler, B. Stoth, Physica D 115, 87 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. A. Hubert, R. Schäfer, Magnetic Domains (Springer, 1998)

  23. J.E. Miltat, M.J. Donahue, Numerical micromagnetics: Finite difference methods, in Handbook of Magnetism and Advanced Magnetic Materials, edited by H. Kronmüller, S. Parkin (John Wiley and Sons Ltd., New York, 2007)

  24. O. Heczko, J. Magn. Magn. Mater. 290, 846 (2004)

    Article  ADS  Google Scholar 

  25. J.D. Jackson, Classical Electrodynamics (John Wiley and Sons, New York, 1999)

  26. H. Kronmüller, General micromagnetic theory, in Handbook of Magnetism and Advanced Magnetic Materials, edited by H. Kronmüller, S. Parkin (John Wiley and Sons Ltd., New York, 2007)

  27. I. Cimrák, Arch. Comput. Methods Eng. 15, 277 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. D. Lewis, N. Nigam, J. Comput. Appl. Math. 151, 141 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. N. Moleans, B. Blanpain, P. Wollants, Calphad 32, 268 (2008)

    Article  Google Scholar 

  30. S. Nemat-Nasser, Micromechanics: Overall Properties of Heterogeneous Materials (Elsevier Ltd, 1998)

  31. A.G. Khachaturyan, Theory of Structural Transformations in Solids (Wiley, New York, 1983)

  32. R. Tickle, R.D. James, J. Magn. Magn. Mater. 195, 627 (1999)

    Article  ADS  Google Scholar 

  33. J.X. Zhang, L.Q. Chen, Acta. Mater. 53, 2845 (2005)

    Article  Google Scholar 

  34. L.J. Li, J.Y. Li, Y.C. Shu, H.Z. Chen, J.H. Yen, Appl. Phys. Lett. 92, 172504 (2008)

    Article  ADS  Google Scholar 

  35. O. Heczko, K. Ullakko, IEEE Trans. Magn. 37, 2672 (2001)

    Article  ADS  Google Scholar 

  36. L. Straka, N. Lanska, K. Ullakko, A. Sozinov, Appl. Phys. Lett. 96, 131903 (2010)

    Article  ADS  Google Scholar 

  37. D. Kellis, A. Smith, K. Ullakko, P. Müllner, J. Cryst. Growth 359, 64 (2012)

    Article  ADS  Google Scholar 

  38. O. Heczko, J. Magn. Magn. Mater. 290, 787 (2005)

    Article  ADS  Google Scholar 

  39. L. Straka, O. Heczko, H. Hänninen, Acta Mater. 56, 5492 (2008)

    Article  Google Scholar 

  40. A. Choudhury, B. Nestler, Phys. Rev. E 85, 021602 (2012)

    Article  ADS  Google Scholar 

  41. E. Faran, D. Shilo, Appl. Phys. Lett. 100, 151901 (2012)

    Article  ADS  Google Scholar 

  42. B. Kiefer, D.C. Lagoudas, Modelling of Magnetic SMAs, Shape Memory Alloys (Springer, 2008), pp. 325–393

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Mennerich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mennerich, C., Wendler, F., Jainta, M. et al. Rearrangement of martensitic variants in Ni2MnGa studied with the phase-field method. Eur. Phys. J. B 86, 171 (2013). https://doi.org/10.1140/epjb/e2013-30941-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-30941-6

Keywords

Navigation