Skip to main content
Log in

A model equation for ultrashort optical pulses around the zero dispersion frequency

  • Focus point issue on Laser dynamics and nonlinear photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The nonlinear Schrödinger equation (NSE) based on the Taylor approximation of the material dispersion can become invalid for ultrashort and few-cycle optical pulses. Instead, we use a rational fit to the dispersion function around the zero dispersion frequency where the transition between anomalous and normal dispersion regimes occurs. This approach allows us to derive a simple non-envelope model for pulses propagating in time within a transparency window of a nonlinear dispersive medium with an instantaneous cubic nonlinearity. For this model we investigate integrals of motion and demonstrate that a uniformly moving non-envelope soliton does not exist. The only possible localized solution is the solitary breather with some intrinsic dynamics in the comoving frame. Classical envelope solitons oscillating in the comoving frame appear for a longer pulse for which the model is equivalent to the standard NSE. For an ultrashort pulse the model provides a natural bridge between the known non-envelope equations for the purely normal and anomalous dispersion regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Hasegawa, Optical Solitons in Fibers (Springer, 1980)

  • G.P. Agrawal, Nonlinear Fiber Optics, 3rd edn. (Academic, 2001)

  • K. Akimoto, J. Phys. Soc. Jpn 65, 2020 (1996)

  • T. Brabec, F. Krausz, Rev. Mod. Phys. 72, 545 (2000)

    Google Scholar 

  • P.M. Paul, E.S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H.G. Muller, P. Agostini, Science 292, 1689 (2001)

  • M. Hentschel, R. Kienberger, C. Spielmann, G.A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, Nature 414, 509 (2001)

    Google Scholar 

  • M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G.A. Reider, P.B. Corkum, F. Krausz, Science 291, 1923 (2001)

  • J.K. Ranka, A.L. Gaeta, Opt. Lett. 23, 534 (1998)

    Google Scholar 

  • J.E. Rothenberg, Opt. Lett. 17, 1340 (1992)

    Google Scholar 

  • P. Kinsler, G.H.C. New, Phys. Rev. A 67, 023813 (2003)

    Google Scholar 

  • J.M. Dudley, G. Genty, S. Coen, Rev. Mod. Phys. 78, 1135 (2006)

    Google Scholar 

  • A. Demircan, U. Bandelow, Opt. Commun. 244, 181 (2005)

    Google Scholar 

  • L. Gilles, J.V. Moloney, L. Vázquez, Phys. Rev. E 60, 1051 (1999)

  • V.P. Kalosha, J. Herrmann, Phys. Rev. A 62, 011804 (2000)

    Google Scholar 

  • J.C.A. Tyrrell, P. Kinsler, G.H.C. New, J. Mod. Opt. 52, 973 (2005)

    Google Scholar 

  • A. Ferrando, M. Zacarés, P. Fernández, P. Fernández de Córdoba, D. Binosi, Á. Montero, Phys. Rev. E 71, 016601 (2005)

    Google Scholar 

  • P. Kinsler, S.B.P. Radnor, G.H.C. New, Phys. Rev. A 72, 063807 (2005)

  • Y. Mizuta, M. Nagasawa, M. Ohtani, M. Yamashita, Phys. Rev. A 72, 063802 (2005)

    Google Scholar 

  • T. Brabec, F. Krausz, Phys. Rev. Lett. 78, 3282 (1997)

    Google Scholar 

  • P. Kinsler, G.H.C. New, Phys. Rev. A 69, 013805 (2004)

    Google Scholar 

  • M.A. Porras, Phys. Rev. A 60, 5069 (1999)

    Google Scholar 

  • M.A. Porras, Phys. Rev. E 65, 026606 (2002)

    Google Scholar 

  • T. Tsurumi, J. Phys. Soc. Jpn 75, 024002 (2006)

    Google Scholar 

  • M.S. Syrchin, A.M. Zheltikov, M. Scalora, Phys. Rev. A 69, 053803 (2004)

  • M. Kolesik, J.V. Moloney, M. Mlejnek, Phys. Rev. Lett. 89, 283902 (2002)

  • M. Kolesik, J.V. Moloney, Phys. Rev. E 70, 036604 (2004)

    Google Scholar 

  • A.A. Zozulya, S.A. Diddams, T.S. Clement, Phys. Rev. A 58, 3303 (1998)

  • A.A. Zozulya, S.A. Diddams, A.G. Van Engen, T.S. Clement, Phys. Rev. Lett. 82, 1430 (1999)

    Google Scholar 

  • N. Aközbek, M. Scalora, C.M. Bowden, S.L. Chin, Opt. Commun. 191, 353 (2001)

  • M.J. Potasek, J. Appl. Phys. 65 (1989)

  • K. Porsezian, K. Nakkeeran, Phys. Rev. Lett. 76, 3955 (1996)

    Google Scholar 

  • M. Gedalin, T.C. Scott, Y.B. Band, Phys. Rev. Lett. 78, 448 (1997)

    Google Scholar 

  • E.M. Gromov, V.I. Talanov, Radiophys. Quant. Electron. 41, 143 (1998)

  • C.E. Zaspel, Phys. Rev. Lett. 82, 723 (1999)

    Google Scholar 

  • E.M. Gromov, V.I. Talanov, Chaos 10, 551 (2000)

  • V.I. Kruglov, A.C. Peacock, J.D. Harvey, Phys. Rev. E 71, 056619 (2005)

  • S. Zhang, L. Yi, Phys. Rev. E 78, 026602 (2008)

    Google Scholar 

  • S. Amiranashvili, U. Bandelow, A. Mielke, Opt. Comm. 283, 480 (2010)

  • G. Genty, P. Kinsler, B. Kibler, J.M. Dudley, Opt. Express 15, 5382 (2007)

  • A.V. Husakou, J. Herrmann, Phys. Rev. Lett. 87, 203901 (2001)

    Google Scholar 

  • M. Geissler, G. Tempea, A. Scrinzi, M. Schnürer, F. Krausz, T. Brabec, Phys. Rev. Lett. 83, 2930 (1999)

    Google Scholar 

  • K.E. Oughstun, H. Xiao, Phys. Rev. Lett. 78, 642 (1997)

    Google Scholar 

  • M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1968)

  • Y.B. Gaididei, S.F. Mingaleev, P.L. Christiansen, K.Ø. Rasmussen, Phys. Lett. A 222, 152 (1996)

    Google Scholar 

  • T. Schäfer, C.E. Wayne, Physica D 196, 90 (2004)

    Google Scholar 

  • S.A. Skobelev, D.V. Kartashov, A.V. Kim, Phys. Rev. Lett. 99, 203902 (2007)

    Google Scholar 

  • S. Amiranashvili, A.G. Vladimirov, U. Bandelow, Phys. Rev. A 77, 063821 (2008)

  • COMSOL, Multiphysics modeling and simulation, http://www.comsol.com/

  • V.E. Semenov, JETP 102, 34 (2006)

  • P.K.A. Wai, H.H. Chen, Y.C. Lee, Phys. Rev. A 41, 426 (1990)

    Google Scholar 

  • A.V. Kim, S.A. Skobelev, D. Anderson, T. Hansson, M. Lisak, Phys. Rev. A 77, 043823 (2008)

    Google Scholar 

  • D.V. Kartashov, A.V. Kim, S.A. Skobelev, JETP Lett. 78, 276 (2003)

    Google Scholar 

  • A.I. Maimistov, Quantum Electron. 30, 287 (2000)

  • N. Costanzino, V. Manukian, C.K.R.T. Jones, SIAM J. Math. Anal. 41, 2088 (2009)

    Google Scholar 

  • S.A. Kozlov, S.V. Sazonov, JETP 84, 221 (1997)

  • E.M. Belenov, A.V. Nazarkin, JETP Lett. 51, 288 (1990)

    Google Scholar 

  • H. Leblond, F. Sanchez, Phys. Rev. A 67, 013804 (2003)

    Google Scholar 

  • M. Wadati, J. Phys. Soc. Jpn 34, 1289 (1973)

    Google Scholar 

  • Y. Chung, C.K.R.T. Jones, T. Schäfer, C.E. Wayne, Nonlinearity 18, 1351 (2005)

    Google Scholar 

  • A. Sakovich, S. Sakovich, J. Phys. Soc. Jpn 74, 239 (2005)

    Google Scholar 

  • J.C. Brunelli, Phys. Lett. A 353, 475 (2006)

    Google Scholar 

  • M. Pietrzyk, I. Kanattŝikov, U. Bandelow, J. Nonlinear Math. Phys. 15, 162 (2008)

    Google Scholar 

  • D. Pelinovsky, A. Sakovich, arXiv:0809.5052 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Bandelow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amiranashvili, S., Vladimirov, A.G. & Bandelow, U. A model equation for ultrashort optical pulses around the zero dispersion frequency. Eur. Phys. J. D 58, 219–226 (2010). https://doi.org/10.1140/epjd/e2010-00010-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-00010-3

Keywords

Navigation