Skip to main content
Log in

Quantum Fisher information for a single qubit system

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

The Fisher information is used for quantum state estimation and considered as a physical resource associated with various quantities. The concept of Fisher information in terms of the atomic density operator is introduced. We give the correlation between the Fisher information and quantum entanglement during the time evolution for a trapped ion in laser field. The effect of the initial state setting on the classical Fisher information and quantum Fisher information is examined. The results show that the Fisher information is efficacious tool to study single qubit dynamics as an indicator of entanglement under certain conditions. Our observations may have important implications in exploiting this quantity in quantum information processing and transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  2. P.W. Shor, SIAM J. Comp. 26, 1484 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Deutsch, R. Jozsa, Proc. R. Soc. Lond. A 439, 553 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. L.K. Grover, Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  5. J.I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  6. S. Schneider, G.J. Milburn, Phys. Rev. A 57, 3748 (1998)

    Article  ADS  Google Scholar 

  7. C.E. Pearson, D.R. Leibrandt, W.S. Bakr, W.J. Mallard, K.R. Brown, I.L. Chuang, Phys. Rev. A 73, 032307 (2006)

    Article  ADS  Google Scholar 

  8. O.E. Barndorff-Nielsen, R.D. Gill, P.E. Jupp, J. R. Statist. Soc. B 65, 775 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. S.L. Braunstein, C.M. Caves, Phys. Rev. Lett. 72, 3439 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. M.A. Ballester, Phys. Rev. A 70, 032310 (2004)

    Article  ADS  Google Scholar 

  11. M.A. Ballester, Phys. Rev. A 69, 022303 (2004)

    Article  ADS  Google Scholar 

  12. M. Hayashi, K. Matsumoto, J. Math. Phys. 49, 102101 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  13. C. Invernizzi, M. Korbman, L.C. Venuti, M.G. Paris, Phys. Rev. A 78, 042106 (2008)

    Article  ADS  Google Scholar 

  14. J. von Neumann, Mathematical foundations of quantum mechanics (Princeton University, 1955)

  15. S.J. Phoenix, P.L. Knight, Ann. Phys. 186, 381 (1988)

    Article  ADS  MATH  Google Scholar 

  16. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  17. P. Rungta, V. Buzek, C.M. Caves, M. Hillery, G.J. Milburn, Phys. Rev. A 64, 042315 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  18. A. Uhlmann, Phys. Rev. A 62, 032307 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  19. K. Berrada, M. El Baz, F. Saif, Y. Hassouni, S. Mnia, J. Phys. A Math. Theor. 42, 285306 (2009)

    Article  Google Scholar 

  20. A.-S.F. Obada, S. Abdel-Khalek, Physica A 389, 891 (2010)

    Article  ADS  Google Scholar 

  21. L. Pezzé, A. Smerzi, Phys. Rev. Lett. 102, 100401 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  22. G.R. Jin, S. Luo, Y.C. Liu, H. Jing, W.M. Liu, JOSA B 27, 105 (2010)

    Article  MATH  Google Scholar 

  23. S. Abdel-Khalek, Int. J. Quantum Inf. 7, 1541 (2009)

    Article  MATH  Google Scholar 

  24. A.-S.F. Obada, S. Abdel-Khalek, A. Plastino, Physica A, 390, 525 (2011)

    Article  ADS  Google Scholar 

  25. Akira Kitagawa, Masahiro Takeoka, Masahide Sasaki, Anthony Chefles, arXiv:quant-ph/0612099

  26. F. Pennini, A. Plastino, Phys. Lett. A 326, 20 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. B.R. Frieden, Physics from Fisher information (Cambridge University Press, Cambridge, 1998)

  28. B.R. Frieden, Science from Fisher information (Cambridge University Press, Cambridge, 2004)

  29. D.A. Lavis, R.F. Streater, Stud. His. Philos. Mod. Phys. 33, 327 (2002)

    Article  MathSciNet  Google Scholar 

  30. A. Fujiwara, Phys. Rev. A 65, 012316 (2001)

    Article  ADS  Google Scholar 

  31. H. Eleuch, J. Phys. B 41, 055502 (2008)

    Article  ADS  Google Scholar 

  32. K. Berrada, M. El Baz, Y. Hassouni, Phys. Lett. A 375, 298 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  33. H. Eleuch, R. Bennaceur, J. Opt. B Quant. Semiclass. Opt. 6, 189 (2004)

    Article  ADS  Google Scholar 

  34. H. Eleuch, Eur. Phys. J. D 49, 391 (2008)

    Article  ADS  Google Scholar 

  35. K. Berrada, Opt. Commun. 285, 2227 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abdel-Khalek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Khalek, S., Berrada, K. & Obada, A.S.F. Quantum Fisher information for a single qubit system. Eur. Phys. J. D 66, 69 (2012). https://doi.org/10.1140/epjd/e2012-20576-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-20576-8

Keywords

Navigation