Skip to main content
Log in

Thermal tripartite quantum correlations: quantum discord and entanglement perspectives

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We investigate thermal tripartite quantum correlations for a spin star network and for a new extended version of it. In a spin star network, three peripheral spins interact with the central spin identically while in extended spin star network, three peripheral spins interact with two central spatially separated spins in the same way. We exploit the method of [C.C. Rulli, M.S. Sarandy, Phys. Rev. A 84, 042109 (2011)] to evaluate the tripartite quantum discord (TQD) and the method of [M. Li, S. Fei, Z. Wang, Rep. Math. Phys 65, 289 (2010)] called as lower bound of tripartite concurrence (LBTC) to evaluate the tripartite entanglement (TE) of the the peripheral parties in both systems. It is found that thermal TQD is much more robust than thermal TE as a function of temperature T. Also, the peripheral parties of the extended spin star network, in comparison with those of the spin star one, can exhibit higher values of TQD at T > 0. This, indeed, motivates us to realise improved quantum information and quantum computation tasks at finite temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)

  2. R. Horodecki et al., Rev. Mod. Phys. 81, 865 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  4. L. Henderson, V. Vedral, J. Phys. A 34, 6899 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. A. Datta, A. Shaji, C.M. Caves, Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  6. B.P. Lanyon, M. Barbieri, M.P. Almeida, A.G. White, Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  7. A. Datta, S. Gharibian, Phys. Rev. A 79, 042325 (2009)

    Article  ADS  Google Scholar 

  8. M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  10. K. Audenaert, F. Verstraete, B. De Moor, Phys. Rev. A 64, 052304 (2001)

    Article  ADS  Google Scholar 

  11. K. Chen, L.A. Wu, Quant. Inf. Comp. 3, 193 (2003)

    MATH  Google Scholar 

  12. O. Rudolph, Phys. Rev. A 67, 032312 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  13. S. Albeverio, K. Chen, S.M. Fei, Phys. Rev. A 68, 062313 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  14. A.C. Doherty, P.A. Parrilo, F.M. Spedalieri, Phys. Rev. Lett. 88, 187904 (2002)

    Article  ADS  Google Scholar 

  15. L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. C. Sabín, G. García-Alcaine, Eur. Phys. J. D 48, 435 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  17. M.S. Sarandy, Phys. Rev. A. 80, 022108 (2009)

    Article  ADS  Google Scholar 

  18. R. Dillenschneider, Phys. Rev. B 78, 224413 (2008)

    Article  ADS  Google Scholar 

  19. S. Luo, Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  20. T. Werlang et al., Phys. Rev. A 80, 024103 (2009)

    Article  ADS  Google Scholar 

  21. M. Ali, A.R.P. Rau, G. Alber, Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  22. D. Girolami, G. Adesso, Phys. Rev. A 83, 052108 (2011)

    Article  ADS  Google Scholar 

  23. P. Giorda, M.G.A. Paris, Phys. Rev. Lett. 105, 020503 (2010)

    Article  ADS  Google Scholar 

  24. B. Bylicka, D. Chruscinski, Phys. Rev. A 81, 062102 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  25. M.C. Arnesen, S. Bose, V. Vedral, Phys. Rev. Lett. 87, 017901 (2001)

    Article  ADS  Google Scholar 

  26. G. Shou-Shu, S. Gang, Phys. Rev. A 80, 012323 (2009)

    Article  ADS  Google Scholar 

  27. W. Hao, L. Sanqiu, H. Jizhou, Phys. Rev. E 79, 041113 (2009)

    Article  Google Scholar 

  28. A. Kumar Pal, I. Bose, J. Phys.: Condens. Matter 22, 016004 (2010)

    Article  ADS  Google Scholar 

  29. Z. Yue, Europhys. Lett. 86, 50004 (2009)

    Article  Google Scholar 

  30. T. Werlang, G. Rigolin, Phys. Rev. A 81, 044101 (2010)

    Article  ADS  Google Scholar 

  31. T. Werlang, G.A.P. Ribeiro, G. Rigolin, Phys. Rev. A 83, 062334 (2011)

    Article  ADS  Google Scholar 

  32. T. Werlang, C. Trippe, G.A.P. Ribeiro, G. Rigolin, Phys. Rev. Lett. 105, 095702 (2010)

    Article  ADS  Google Scholar 

  33. Y. Makhlin, G. Schoen, A. Shnirman, Nature 398, 305 (1999)

    Article  ADS  Google Scholar 

  34. J.I. Cirac, P. Zoller, Nature 404, 579 (2000)

    Article  ADS  Google Scholar 

  35. B.E. Keane, Nature 393, 133 (1998)

    Article  ADS  Google Scholar 

  36. A. Hutton, S. Bose, Phys. Rev. A 69, 042312 (2004)

    Article  ADS  Google Scholar 

  37. Y. Wan-Li, W. Hua, F. Mang, A. Jun-Hong, Chin. Phys. B 18, 3677 (2009)

    Article  ADS  Google Scholar 

  38. X.S. Ma, M.T. Cheng, G.X. Zhao, A.M. Wang, Physica A 391, 2500 (2012)

    Article  ADS  Google Scholar 

  39. C.C. Rulli, M.S. Sarandy, Phys. Rev. A 84, 042109 (2011)

    Article  ADS  Google Scholar 

  40. M. Li, S. Fei, Z. Wang, Rep. Math. Phys. 65, 289 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  41. K. Chen, S. Albeverio, S.M. Fei, Phys. Rev. Lett. 95, 040504 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  42. J.I. de Vicente, Phys. Rev. A 75, 052320 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  43. C.J. Zhang et al., Phys. Rev. A 76, 012334 (2007)

    Article  ADS  Google Scholar 

  44. T. Werlang, S. Souza, F.F. Fanchini, C.J. Villas Boas, Phys. Rev. A 80, 024103 (2009)

    Article  ADS  Google Scholar 

  45. B. Liu, B. Shao, J. Zou, Phys. Rev. A 82, 062119 (2010)

    Article  ADS  Google Scholar 

  46. K. Berrada, H. Eleuch, Y. Hassouni, J. Phys. B 44, 145503 (2011)

    Article  ADS  Google Scholar 

  47. Daniel K.L. Oi, S.G. Sophie, Phys. Rev. A 86, 012121 (2012)

    Article  ADS  Google Scholar 

  48. J.J. Jiang, Y.J. Liu, F. Tang, C.H. Yang, Eur. Phys. J. B 81, 419 (2011)

    Article  ADS  Google Scholar 

  49. A. Acin et al., Phys. Rev. Lett. 87, 040401 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  50. O. Guhne et al., J. Mod. Opt. 50, 1079 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naghi Behzadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behzadi, N., Ahansaz, B. Thermal tripartite quantum correlations: quantum discord and entanglement perspectives. Eur. Phys. J. D 67, 112 (2013). https://doi.org/10.1140/epjd/e2013-30435-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-30435-9

Keywords

Navigation