Skip to main content

Advertisement

Log in

Structural and oxidation properties of CoNi nanowires

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Nanocylinders made out of CoNi alloys offer interesting properties which are dependent on the proportion of the constituent elements, the preparation methods and the thermal history of the sample. In the present paper we calculate the structural and electronic properties of Co1−x Ni x alloys at subnanoscopic level. SIESTA program is used to relax the structures following standard protocols. Relative positions of the minority atoms (Ni) are varied aiming to find the lowest energy configurations. It is found that Ni atoms minimize energy at surface positions mainly at the ends of the cylinders. The implications of this result in the magnetic properties of the systems are discussed. The work is continued to study the oxidation properties of the different possible surface compositions. It is found that surfaces of Ni are more resistant to oxidation than Co ones. The combination of the two previous results can lead to cylinders with high magnetic coercivity and relatively high resistance to oxidation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Nielsch, B.H.J. Stadler, in Handbook of Magnetism and Advanced Magnetic Materials, edited by H. Kronller, S. Parkin (John Wiley & Sons, Chichester 2007), Vol. 4: Novel Materials, pp. 2227−2255

  2. E.E. Vogel, P. Vargas, D. Altbir, J. Escrig, in Handbook of Nanophysics, edited by Klaus D. Sattler (CRC Press, 2010), Vol. 4, Art. 14, pp. 1−12

  3. J. Cantu-Valle, I. Betancourt, J.E. Sanchez, F. Ruiz-Zepeda, M.M. Maqableh, F. Mendoza-Santoyo, B.J.H. Stadler, A. Ponce, J. Appl. Phys. 118, 024302 (2015)

    Article  ADS  Google Scholar 

  4. O. Yalcin, G. Kartopu, H. Cetin, A.S. Demiray, S. Kazan, J. Magn. Magn. Mater. 373, 207 (2015)

    Article  ADS  Google Scholar 

  5. H. Pan, J.B. Yi, B.H. Liu, S. Thongmee, J. Ding, Y.P. Feng, J.Y. Lin, Solid State Phenomena, 111, 123 (2006)

    Article  Google Scholar 

  6. J. Vilana, D. Escalera-Lopez, E. Gomez, E. Valles, J. Alloys Compd. 646, 669 (2015)

    Article  Google Scholar 

  7. S. Liebana-Vinas, U. Wiedwald, A. Elsukova, J. Perl, B. Zingsem, A.S. Semisalova, V. Salgueirino, M. Spasova, M. Farle, Chem. Mater. 27, 4015 (2015)

    Article  Google Scholar 

  8. Y.G. Kwag, J.K. Ha, H.S. Kim, H.J. Cho, K.K. Cho, J. Nanosci. Nanotechnol. 14, 8930 (2014)

    Article  Google Scholar 

  9. Y. Cao, G.Y. Wei, H.L. Ge, Y.D. Yu, Int. J. Electrochem. Sci. 9, 5272 (2014)

    Google Scholar 

  10. J. Garcia, V. Vega, L. Iglesias, V.M. Prida, B. Hernando, E.D. Barriga-Castro, R. Mendoza-Resendez, C. Luna, D. Gorlitz, K. Nielsch, Phys. Stat. Sol. A 211, 1041 (2014)

    Article  Google Scholar 

  11. C.Y. Yang, Y.C. Tseng, H.J. Lin, J. Nanopart. Res. 15, 1542 (2013)

    Article  Google Scholar 

  12. C.Y. Yang, L.W. Wang, P.A. Chen, H.J. Lin, C.H. Lai, Y.C. Tseng, J. Appl. Phys. 114, 063902 (2013)

    Article  ADS  Google Scholar 

  13. K. Maaz, S.H. Kim, M.H. Jung, G.H. Kim, J. Alloys Compd. 520, 272 (2012)

    Article  Google Scholar 

  14. M. Najafi, S. Soltanian, H. Danyali, R. Hallaj, A. Salimi, S.M. Elahi, P. Servati, J. Mater. Res. 27, 2382 (2012)

    Article  ADS  Google Scholar 

  15. R. Lavin, C. Gallardo, J.L. Palma, J. Escrig, J.C. Denardin, J. Magn. Magn. Mater. 324, 2360 (2012)

    Article  ADS  Google Scholar 

  16. J. Escrig, P. Landeros, D. Altbir, E.E. Vogel, P. Vargas, J. Magn. Magn. Mater. 308, 233 (2007)

    Article  ADS  Google Scholar 

  17. J. Escrig, P. Landeros, D. Altbir, E.E. Vogel, J. Magn. Magn. Mater. 310, 2448 (2007)

    Article  ADS  Google Scholar 

  18. J. Jalilian, H. Zahrabi, J. Jalilian, F. Soofivand, S. Farshadfar, S. Naderizadeh, N. Rahimi, Comput. Theor. Chem. 979, 10 (2012)

    Article  Google Scholar 

  19. S.J. Blundell, F.L. Pratt, J. Phys.: Condens. Matter 16, R771 (2004)

    ADS  Google Scholar 

  20. F. Aguilera-Granja, J.M. Montejano-Carrizales, E.E. Vogel, Eur. Phys. J. D 68, 38 (2014)

    Article  ADS  Google Scholar 

  21. J.M. Soler., E. Artacho, J.D. Gale., A. García, J. Junquera, P. Ordejon, D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002)

    ADS  Google Scholar 

  22. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  23. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  24. L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48, 1425 (1982)

    Article  ADS  Google Scholar 

  25. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran, 2nd edn. (Cambridge University Press, Cambridge, 1992)

  26. F. Aguilera-Granja, A. García-Fuente, A. Vega, Phys. Rev. B 78, 134425 (2008)

    Article  ADS  Google Scholar 

  27. F. Ducastelle, in Order and Phase Stability in Alloys, edited by F.R. de Boer, D.G. Petifor (North Holland, Amsterdam, 1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Martin Montejano-Carrizales.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilera-Granja, F., Montejano-Carrizales, J. & Vogel, E. Structural and oxidation properties of CoNi nanowires. Eur. Phys. J. D 70, 137 (2016). https://doi.org/10.1140/epjd/e2016-70162-1

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70162-1

Keywords

Navigation