Skip to main content
Log in

Effect of dissipative environment on collapses and revivals of a non-linear quantum oscillator

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We study the dissipative dynamics of a wave packet passing through two different non-linear media. The effect of dissipation on the phenomenon of collapses and revivals of a wave packet as it evolves in a Kerr-type non-linear medium (represented by the Hamiltonian (aa)2) is investigated. We find that partial revivals do take place when dissipation values are moderate. For a certain regime of parameters we find a solution where revivals do not die even in the presence of dissipation and the non-linearity appears to compensate for the energy and coherence loss. We consider the next order non-linearity, represented by the Hamiltonian (aa)3, where we observe the phenomena of super revivals. The effect of dissipation in this case has an additional feature of number dependence for the displaced number states. While our simulations explore the degree to which the phenomena of collapses and revivals degrades in a dissipative environment, we also discovered the presence of a situation where degradation is minimal.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Graham, F. Haake, in Quantum Statistics in Optics and Solid-State Physics (Springer Tracts in Modern Physics) (Springer-Verlag, Berlin, Heidelberg, 1973), Vol. 66

  2. W.H. Louisell, Quantum Statistical Properties of Radiation (Wiley Classics Library) (Wiley-VCH, 1990)

  3. A. Caldeira, A. Leggett, Physica A 121, 587 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  4. H. Grabert, P. Schramm, G.-L. Ingold, Phys. Rep. 168, 115 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  5. H. Grabert, U. Weiss, P. Talkner, Z. Phys. B Condens. Matter 55, 87 (1984)

    Article  ADS  Google Scholar 

  6. C.W. Gardiner, P. Zoller, Quantum noise: A handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics (Springer series in synergetics), 3rd edition (Springer-Verlag, Berlin, Heidelberg, Germany, 2004)

  7. D.F. Walls, G.J. Milburn, Quantum Optics, 2nd edition (Springer-Verlag, Berlin, Heidelberg, Germany, 2008)

  8. P. Földi, M.G. Benedict, A. Czirják, B. Molnár, Phys. Rev. A 67, 032104 (2003)

    Article  ADS  Google Scholar 

  9. R.J. Glauber, Phys. Rev. 130, 2529 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  10. E.C.G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  11. J.R. Klauder, E.C.G. Sudarshan, Fundamentals of Quantum Optics (W.A. Benjamin Inc., New York, 1968)

  12. A. Peres, Phys. Rev. A 47, 5196 (1993)

    Article  ADS  Google Scholar 

  13. O. Knospe, R. Schmidt, Phys. Rev. A 54, 1154 (1996)

    Article  ADS  Google Scholar 

  14. R. Arvieu, P. Rozmej, Phys. Rev. A 51, 104 (1995)

    Article  ADS  Google Scholar 

  15. I.S. Averbukh, Phys. Rev. A 46, R2205 (1992)

    Article  ADS  Google Scholar 

  16. C.U. Segre, J.D. Sullivan, Am. J. Phys. 44, 729 (1976)

    Article  ADS  Google Scholar 

  17. D.L. Aronstein, C.R. Stroud, Phys. Rev. A 55, 4526 (1997)

    Article  ADS  Google Scholar 

  18. R.W. Robinett, Am. J. Phys. 68, 410 (2000)

    Article  ADS  Google Scholar 

  19. D.F. Styer, Am. J. Phys. 69, 56 (2001)

    Article  ADS  Google Scholar 

  20. R. Robinett, Phys. Rep. 392, 1 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  21. C. Sudheesh, S. Lakshmibala, V. Balakrishnan, J. Opt. B: Quantum Semiclass. Opt. 7, S728 (2005)

    Article  ADS  Google Scholar 

  22. V.Y. Demikhovskii, A.V. Telezhnikov, E.V. Frolova, N.A. Kravets, Low Temp. Phys. 39, 18 (2013)

    Article  ADS  Google Scholar 

  23. B. Gruner, M. Schlesinger, P. Heister, W.T. Strunz, F. Stienkemeier, M. Mudrich, Phys. Chem. Chem. Phys. 13, 6816 (2011)

    Article  Google Scholar 

  24. M. Kaur, B. Arora, M. Mian, Pramana J. Phys. 86, 31 (2016)

    Article  ADS  Google Scholar 

  25. A.G. Redfield, IBM J. Res. Dev. 1, 19 (1957)

    Article  Google Scholar 

  26. R. Feynman, F. Vernon, Ann. Phys. 24, 118 (1963)

    Article  ADS  Google Scholar 

  27. S. Nakajima, Prog. Theor. Phys. 20, 948 (1958)

    Article  ADS  Google Scholar 

  28. H. Eleuch, I. Rotter, Phys. Rev. A 95, 022117 (2017)

    Article  ADS  Google Scholar 

  29. H. Eleuch, J.M. Courty, G. Messin, C. Fabre, E. Giacobino, J. Opt. B: Quantum Semiclass. Opt. 1, 1 (1999)

    Article  ADS  Google Scholar 

  30. H. Eleuch, Eur. Phys. J. D 48, 139 (2008)

    Article  ADS  Google Scholar 

  31. H. Eleuch, N. Ben Nessib, R. Bennaceur, Eur. Phys. J. D 29, 391 (2004)

    Article  ADS  Google Scholar 

  32. H. Jabri, H. Eleuch, T. Djerad, Laser Phys. Lett. 2, 253 (2005)

    Article  ADS  Google Scholar 

  33. K. Berrada, H. Eleuch, Y. Hassouni, J. Phys. B: Atom. Mol. Opt. Phys. 44, 145503 (2011)

    Article  ADS  Google Scholar 

  34. S.A. Podoshvedov, J. Opt. Soc. Am. B 31, 2491 (2014)

    Article  ADS  Google Scholar 

  35. N. Pop, D. Popov, M. Davidovic, Int. J. Theor. Phys. 52, 2275 (2013)

    Article  Google Scholar 

  36. A.S. Coelho, L.S. Costanzo, A. Zavatta, C. Hughes, M.S. Kim, M. Bellini, Phys. Rev. Lett. 116, 110501 (2016)

    Article  ADS  Google Scholar 

  37. S.K. Turitsyn, B.G. Bale, M.P. Fedoruk, Phys. Rep. 521, 135 (2012)

    Article  ADS  Google Scholar 

  38. G. Nehmetallah, P.P. Banerjee, J. Opt. Soc. Am. B 23, 203 (2006)

    Article  ADS  Google Scholar 

  39. S.K. Adhikari, Phys. Rev. E 71, 016611 (2005)

    Article  ADS  Google Scholar 

  40. R. Camassa, J.M. Hyman, B.P. Luce, Physica D 123, 1 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  41. H. Eleuch, R. Bennaceur, J. Opt. A: Pure Appl. Opt. 5, 528 (2003)

    Article  ADS  Google Scholar 

  42. M. Remoissenet, Waves Called Solitons: Concepts and Experiments (Advanced Texts in Physics), 3rd edn. (Springer-Verlag, Berlin, Heidelberg, 2003)

  43. P. Drummond, R. Shelby, S. Friberg, Y. Yamamoto, Nature 365, 307 (1993)

    Article  ADS  Google Scholar 

  44. W.H. Zurek, Phys. Rev. D 26, 1862 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  45. W.G. Unruh, W.H. Zurek, Phys. Rev. D 40, 1071 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  46. B.L. Hu, J.P. Paz, Y. Zhang, Phys. Rev. D 45, 2843 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  47. H.J. Carmichael, Statistical Methods in Quantum Optics 1 (Springer-Verlag, Berlin, Heidelberg, Germany, 2013)

  48. J.R. Klauder, Ann. Phys. 11, 123 (1960)

    Article  ADS  Google Scholar 

  49. M. Kaur, M. Mian, M. Kaur, J. Mater. Sci. 3, 31 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, M., Arora, B. & Arvind Effect of dissipative environment on collapses and revivals of a non-linear quantum oscillator. Eur. Phys. J. D 72, 136 (2018). https://doi.org/10.1140/epjd/e2018-80782-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2018-80782-x

Keywords

Navigation