Skip to main content
Log in

Spinodal-like dewetting of thermodynamically-stable thin polymer films

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Energetic considerations indicate that long-range Van der Waals forces stabilize thin polystyrene (PS) films against height fluctuations on silicon substrates. Nevertheless, we report here on the amplification of capillary waves of specific wavelengths for 15 nm thick PS films on silicon, ultimately leading to dewetting in a “spinodal-like” process. However, the temporal dependence of the wavelength of the growing instability does not agree with the “classical” spinodal dewetting mechanism. Therefore, this phenomenon is ascribed to the existence of “structural” forces resulting either from the restructuring of the films or from density variations within the films during annealing, in accordance with recent theoretical treatments. The process is shown not to be limited to polystyrene films, which indicates the generality of our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Reiter, Phys. Rev. Lett. 68, 75 (1992)

    Article  Google Scholar 

  2. W. Zhao, M.H. Rafailovich, J. Sokolov, L.J. Fetters, R. Plano, M.K. Sanyal, S.K. Sinha, B.B. Sauer, Phys. Rev. Lett. 70, 1453 (1993)

    Article  Google Scholar 

  3. C. Redon, J.B. Brzoska, F. Brochard-Wyart, Macromolecules 27, 468 (1994)

    Google Scholar 

  4. R. Yerushalmi-Rozen, J. Klein, L.J. Fetters, Science 263, 793 (1994)

    Google Scholar 

  5. A. Sharma, G. Reiter, J. Coll. Interf. Sci. 178, 383 (1996)

    Article  Google Scholar 

  6. J. Bischof, D. Scherer, S. Herminghaus, P. Leiderer, Phys. Rev. Lett. 77, 1536 (1996)

    Article  Google Scholar 

  7. G. Reiter, P. Auroy, L. Auvray, Macromolecules 29, 2150 (1996)

    Article  Google Scholar 

  8. T.G. Stange, D.F. Evans, W.A. Hendrickson, Langmuir 13, 4459 (1997)

    Article  Google Scholar 

  9. K. Jacobs, S. Herminghaus, K. Mecke, Langmuir 14, 965 (1998)

    Article  Google Scholar 

  10. M. Tolan, O.H. Seeck, J.-P. Schlomka, W. Press, J. Wang, S.K. Sinha, Z. Li, M.H. Rafailovich, J. Sokolov, Phys. Rev. Lett. 81, 2731 (1998)

    Article  Google Scholar 

  11. R. Xie, A. Karim, J.F. Douglas, C.C. Han, R.A. Weiss, Phys. Rev. Lett. 81, 1251 (1998)

    Article  Google Scholar 

  12. P. Müller-Buschbaum, M. Stamm, Physica B 248, 229 (1998)

    Google Scholar 

  13. H.I. Kim, M. Mate, K.A. Hannibal, S.S. Perry, Phys. Rev. Lett. 82, 3496 (1999)

    Article  Google Scholar 

  14. G. Reiter, A. Sharma, A. Casoli, M.-O. David, R. Khanna, P. Auroy, Langmuir 15, 2551 (1999)

    Article  Google Scholar 

  15. R. Khanna, A. Sharma, G. Reiter, EPJdirect E 2, 1 (2000)

    Google Scholar 

  16. R. Seemann, S. Herminghaus, K. Jacobs, Phys. Rev. Lett. 86, 5534 (2001)

    Article  Google Scholar 

  17. G. Reiter, A. Sharma, Phys. Rev. Lett. 87, 166103 (2001)

    Google Scholar 

  18. G. Reiter, Phys. Rev. Lett. 87, 186101 (2001)

    Article  Google Scholar 

  19. B. Du, F. Xie, Y. Wang, Z. Yang, O.K.C. Tsui, Langmuir 18, 8510 (2002)

    Article  Google Scholar 

  20. J.-L. Masson, P.F. Green, Phys. Rev. Lett. 88, 205504 (2002)

    Article  Google Scholar 

  21. A. Sehgal, V. Ferreiro, J.F. Douglas, E.J. Amis, A. Karim, Langmuir 18, 7041 (2002)

    Article  CAS  Google Scholar 

  22. A. Vrij, J.T.G. Overbeek, J. Am. Chem. Soc. 90, 3074 (1968)

    Google Scholar 

  23. F. Brochard Wyart, J. Daillant, Can. J. Phys. 68, 1084 (1990)

    Google Scholar 

  24. F. Brochard-Wyart, C. Redon, C. Sykes, C.R. Acad. Sci. Paris. 314, Série II, 19 (1992)

  25. A. Sharma, Langmuir 9, 861 (1993)

    Google Scholar 

  26. K.Y. Suh, H.H. Lee, Phys. Rev. Lett. 87, 135502 (2001)

    Article  Google Scholar 

  27. U. Thiele, M.G. Velarde, K. Neuffer, Phys. Rev. Lett. 87, 016104 (2001)

    Google Scholar 

  28. K.D.F. Wensink, B. Jérôme, Langmuir 18, 413 (2002)

    Article  Google Scholar 

  29. A. Sharma, J. Mittal, Phys. Rev. Lett. 89, 186101 (2002)

    Article  Google Scholar 

  30. J. Becker, G. Grün, R. Seemann, H. Mantz, K. Jacobs, K.R. Mecke, R. Blossey, Nature Materials 2, 59 (2003)

    Article  Google Scholar 

  31. Sign conventions adopted in the present paper are identical to the ones of reference [25]

  32. F.P. Buff, R.A. Lovett, F.H. Stillinger, Phys. Rev. Lett. 15, 621 (1965)

    Article  Google Scholar 

  33. K.R. Mecke, J. Phys.: Condens. Matter 13, 4615 (2001)

    Article  Google Scholar 

  34. J. Visser, Adv. Coll. Interf. Sci. 3, 331 (1972)

    Article  Google Scholar 

  35. D.B. Hough, L.R. White, Adv. Coll. Interf. Sci. 14, 3 (1980)

    Article  Google Scholar 

  36. C.J. Van Oss, M.K. Chaudhury, R.J. Good, Chem. Rev. 88, 927 (1988)

    Google Scholar 

  37. T. Kerle, R. Yerushalmi-Rozen, J. Klein, L.J. Fetters, Europhys. Lett. 44, 484 (1998)

    Article  Google Scholar 

  38. L. Bergström, Adv. Coll. Interf. Sci. 70, 125 (1997)

    Article  Google Scholar 

  39. H.D. Ackler, R.H. French, Y.-M. Chiang, J. Coll. Interf. Sci. 179, 460 (1996)

    Article  Google Scholar 

  40. In reference [19], hole nucleation was observed to dominate dewetting for rubbed PS films thicker than 13.3 nm, deposited onto a 106 nm thick thermal oxide layer grown on Si. However, this does not rule out spinodal dewetting for much thicker unrubbed films, for which hole nucleation would probably not be so easy

  41. J.F. Elman, B.D. Johs, T.E. Long, J.T. Koberstein, Macromolecules 27, 5341 (1994)

    Google Scholar 

  42. A.H. Carim, M.M. Dovek, C.F. Quate, R. Sinclair, C. Vorst, Science 237, 630 (1987)

    Google Scholar 

  43. The massive presence of -Si-OH functions on the wafers was confirmed by the fact that gas phase silanation of these substrates with monofunctional chloro- or alkoxy-silanes gave rise to monolayers of expected electron density (about 0.35−0.4 Å−3, as obtained by X-ray reflectometry) (see A. Pallandre, K. Glinel, A.M. Jonas, B. Nysten, submitted)

  44. C. Bollinne, V.W. Stone, V. Carlier, A.M. Jonas, Macromolecules 32, 4719 (1999)

    Article  Google Scholar 

  45. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C, 2nd edn. (Cambridge University Press, Cambridge, 1992)

  46. J. Meunier, J. Phys. France 48, 1819 (1987)

    Google Scholar 

  47. K.R. Mecke, S. Dietrich, Phys. Rev. E 59, 6766 (1999)

    Article  Google Scholar 

  48. C. Fradin, A. Braslau, D. Luzet, D. Smilgies, M. Alba, N. Boudet, K. Mecke, J. Daillant, Nature 403, 871 (2000)

    PubMed  Google Scholar 

  49. C. Bollinne, S. Cuenot, B. Nysten, A.M. Jonas, manuscript in preparation

  50. This expression, although not rigorous [33], was used previously to describe the influence of long range forces onto the spectrum of capillary waves: see I.M. Tidswell, T.A. Rabedeau, P.S. Pershan, S.D. Kosowsky, Phys. Rev. Lett. 66, 2108 (1991)

    Article  Google Scholar 

  51. The power spectral density of these films was not equal to the theoretical equilibrium spectrum of capillary waves, probably due to confinement

  52. P.-G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)

    Google Scholar 

  53. In this respect, one can wonder whether the often reported dependence of glass transition temperature with film thickness would not be of similar origin

  54. P. Müller-Buschbaum, J.S. Gutmann, C. Lorenz-Haas, O. Wunnicke, M. Stamm, W. Petry, Macromolecules 35, 2017 (2002)

    Article  Google Scholar 

  55. M. Bestehorn, A. Pototsky, U. Thiele, Eur. Phys. J. B 33, 457 (2003)

    Google Scholar 

  56. Solids far from equilibrium, edited by J.S. Langer, C. Godreche (Cambridge University Press, 1992), pp. 297-363

  57. V.S. Mitlin, J. Colloid Interface Sci. 233, 153 (2001)

    Article  Google Scholar 

  58. K.B. Glasner, T.P. Witelski, Phys. Rev. E 67, 016302 (2003)

    Article  Google Scholar 

  59. P. Müller-Buschbaum, Eur. Phys. J. E 12, 443 (2003)

    Google Scholar 

  60. M.K. Sanyal, J.K. Basu, A. Datta, S. Banerjee, Europhys. Lett. 36, 265 (1996)

    Article  Google Scholar 

  61. C. Bollinne, V.W. Stone, V. Carlier, A.M. Jonas, Macromolecules 32, 4719 (1999)

    Article  Google Scholar 

  62. G. Evmenenko, S.W. Dugan, J. Kmetko, P. Dutta, Langmuir 17, 4021 (2001)

    Google Scholar 

  63. A. van der Lee, L. Hamon, Y. Holl, Y. Grohens, Langmuir 17, 7664 (2001)

    Article  Google Scholar 

  64. G. Evmenenko, C.-J. Yu, J. Kmetko, P. Dutta, Langmuir 18, 5468 (2002)

    Article  Google Scholar 

  65. A.K. Doerr, M. Tolan, J.-P. Schlomka, W. Press, Europhys. Lett. 52, 330 (2000)

    Article  Google Scholar 

  66. C.-J. Yu, A.G. Richter, J. Kmetko, S.W. Dugan, A. Datta, P. Dutta, Phys. Rev. E 63, 021205 (2001)

    Article  Google Scholar 

  67. R.C. Bell, H. Wang, M.J. Iedema, J.P. Cowin, J. Am. Chem. Soc. 125, 5176 (2003)

    Google Scholar 

  68. K.D.F. Wensink, B. Jérôme, Langmuir 18, 413 (2002)

    Article  Google Scholar 

  69. A. Sharma, J. Mittal, Phys. Rev. Lett. 89, 186101 (2002)

    Article  Google Scholar 

  70. G. Reiter, P.G. de Gennes, Eur. Phys. J. E 6, 25 (2001)

    Article  Google Scholar 

  71. G.C. Berry, T.G. Fox, Adv. Polym. Sci. 5, 261 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Jonas.

Additional information

Received: 1 August 2003

PACS:

68.15. + e Liquid thin films - 47.20.-k Hydrodynamic stability - 47.20.Ma Interfacial instability - 68.08.-p Liquid-solid interfaces

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bollinne, C., Cuenot, S., Nysten, B. et al. Spinodal-like dewetting of thermodynamically-stable thin polymer films. Eur. Phys. J. E 12, 389–396 (2003). https://doi.org/10.1140/epje/e2004-00007-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/e2004-00007-6

Keywords

Navigation