Skip to main content
Log in

Comparing simulation and experiment of a 2D granular Couette shear device

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We present experiments along with molecular-dynamics (MD) simulations of a two-dimensional (2D) granular material in a Couette cell undergoing slow shearing. The grains are disks confined between an inner, rotating wheel and a fixed outer ring. The simulation results are compared to experimental studies and quantitative agreement is found. Tracking the positions and orientations of individual particles allows us to obtain density distributions, velocity and particle rotation rates for the system. The key issue of this paper is to show the extent to which quantitative agreement between an experiment and MD simulations is possible. Besides many differences in model details and the experiment, the qualitative features are nicely reproduced. We discuss the quantitative agreement/disagreement, give possible reasons, and outline further research perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Reynolds, Philos. Mag. Ser. 5 50-20, 469 (1885).

  2. R.A. Bagnold, Proc. R. Soc. London 225, 49 (1954).

    Google Scholar 

  3. J.B. Knight, Phys. Rev. E 55, 6016 (1997).

    Article  Google Scholar 

  4. T.G. Drake, J. Geophys. Res. 95, 8681 (1990).

    Google Scholar 

  5. R.M. Nedderman, C. Laohakul, Powder Technol. 25, 91 (1980).

    Article  Google Scholar 

  6. S.B. Savage, K. Hutter, J. Fluid Mech. 199, 177 (1989).

    MathSciNet  MATH  Google Scholar 

  7. O. Pouliquen, R. Gutfraind, Phys. Rev. E 53, 552 (1996).

    Article  Google Scholar 

  8. H.J. Herrmann, Phys. Blätter 51, 1083 (1995).

    Google Scholar 

  9. L. Vanel, P. Claudin, J.-P. Bouchaud, M.E. Cates, E. Clément, J.P. Wittmer, Phys. Rev. Lett. 84, 1439 (2000).

    Article  Google Scholar 

  10. J. Geng, D. Howell, E. Longhi, R.P. Behringer, G. Reydellet, L. Vanel, E. Clément, S. Luding, Phys. Rev. Lett. 87, 035506 (2001).

    Google Scholar 

  11. J. Geng, R.P. Behringer, G. Reydellet, E. Clément, S. Luding, Green’s function measurements in 2d granular materials (2002), in preparation.

  12. C.T. Veje, D.W. Howell, R.P. Behringer, Phys. Rev. E 59, 739 (1999).

    Article  Google Scholar 

  13. B. Miller, C. O’Hern, R.P. Behringer, Phys. Rev. Lett. 77, 3110 (1996).

    Article  Google Scholar 

  14. C.T. Veje, D.W. Howell, R.P. Behringer, S. Schöllmann, S. Luding, H.J. Herrmann, in Physics of Dry Granular Media, edited by H.J. Herrmann, J.-P. Hovi, S. Luding (Kluwer Academic Publishers, Dordrecht, 1998) p. 237.

  15. D. Howell, R.P. Behringer, C. Veje, Phys. Rev. Lett. 82, 5241 (1999).

    Article  Google Scholar 

  16. D.W. Howell, R.P. Behringer, C.T. Veje, Chaos 9, 559 (1999).

    Article  MATH  Google Scholar 

  17. D.W. Howell, Stress Distributions and Fluctuations in Static and Quasi-static Granular Systems, PhD Thesis, Duke University, Department of Physics (1999).

  18. E. Azanza, F. Chevoir, P. Moucheront, J. Fluid Mech. 400, 199 (1999).

    Article  MATH  Google Scholar 

  19. W. Losert, D.G.W. Cooper, J.P. Gollub, Phys. Rev. E 59, 5855 (1999).

    Article  Google Scholar 

  20. H. Buggisch, G. Löffelmann, Chem. Eng. Process. 26, 193 (1989).

    Article  Google Scholar 

  21. J.M. Rotter, J.M. F.G. Holst, J.Y. Ooi, A.M. Sanad, Philos. Trans. R. Soc. London, Ser. A 356, 2685 (1998).

    Article  Google Scholar 

  22. J.M. F.G. Holst, J.Y. Ooi, J.M. Rotter, G.H. Rong, J. Eng. Mech. ASCE 125, 94 (1999).

    Article  Google Scholar 

  23. J.M. F.G. Holst, J.M. Rotter, J.Y. Ooi, G.H. Rong, J. Eng. Mech. ASCE 125, 104 (1999).

    Article  Google Scholar 

  24. S. Luding, M. Lätzel, H.J. Herrmann, in Handbook of Conveying and Handling of Particulate Solids, edited by A. Levy, H. Kalman (Elsevier, Amsterdam, 2001) pp. 39-44.-1

  25. S. Luding, M. Lätzel, W. Volk, S. Diebels, H.J. Herrmann, Comp. Meth. Appl. Mech. Eng. 191, 21 (2001).

    Article  MATH  Google Scholar 

  26. C.S. Campbell, C.E. Brennen, J. Fluid. Mech. 151, 167 (1985).

    Google Scholar 

  27. D.J. Evans, G.P. Morriss, Phys. Rev. Lett. 51, 1776 (1983).

    Article  Google Scholar 

  28. O.R. Walton, R.L. Braun, Acta Mechanica 63, 73 (1986).

    Google Scholar 

  29. C. Thornton, K.K. Yin, Powder Technol. 65, 153 (1991).

    Article  Google Scholar 

  30. C. Thornton, J. Appl. Mech. 64, 383 (1997).

    MATH  Google Scholar 

  31. C. Thornton, S.J. Antony, Powder Technol. 109, 179 (2000).

    Article  Google Scholar 

  32. M. Lätzel, S. Luding, H.J. Herrmann, Granular Matter 2, 123 (2000), cond-mat/0003180.

    Article  Google Scholar 

  33. S. Masson, J. Eng. Mech. 127, 1007 (2001).

    Article  Google Scholar 

  34. H.-J. Tillemans, H.J. Herrmann, Physica A 217, 261 (1995).

    Article  Google Scholar 

  35. C. Thornton, L. Zhang, in Powders & Grains 2001, edited by Y. Kishino (Balkema, Rotterdam, 2001) pp. 183-190.

  36. M. Oda, K. Iwashita, Int. J. Eng. Sci. 38, 1713 (2000).

    Article  Google Scholar 

  37. M. Oda, H. Kazama, Géotechnique 48, 465 (1998).

    Google Scholar 

  38. F. Radjai, S. Roux, J.J. Moreau, Chaos 9, 544 (1999).

    Article  MATH  Google Scholar 

  39. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987).

  40. S. Schöllmann, Phys. Rev. E 59, 889 (1999).

    Article  Google Scholar 

  41. H.J. Herrmann, S. Luding, Continuum Mech. Thermodyn. 10, 189 (1998).

    Article  MATH  Google Scholar 

  42. P.A. Cundall, O.D.L. Strack, Géotechnique 29, 47 (1979).

    Google Scholar 

  43. L. Brendel, S. Dippel, in Physics of Dry Granular Media, edited by H.J. Herrmann, J.-P. Hovi, S. Luding (Kluwer Academic Publishers, Dordrecht, 1998) p. 313.

  44. S.F. Foerster, M.Y. Louge, H. Chang, K. Allia, Phys. Fluids 6, 1108 (1994).

    Article  Google Scholar 

  45. S. Luding, Adv. Complex Syst. 4, 379 (2002).

    Article  Google Scholar 

  46. M. Lätzel, Bestimmung der Cosseratparameter mit Hilfe diskreter Simulationen, Master’s Thesis, Universität Stuttgart (1999).

  47. O.R. Walton, R.L. Braun, J. Rheol. 30, 949 (1986).

    Article  Google Scholar 

  48. R.W. Mei, H. Shang, O.R. Walton, J.F. Klausner, Powder Technol. 112, 102 (2000).

    Article  Google Scholar 

  49. C. Thornton, Géotechnique 50, 43 (2000).

    Google Scholar 

  50. S. Luding, J. Duran, E. Clément, J. Rajchenbach, J. Phys. I 6, 823 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Luding.

Additional information

Received: 3 March 2003, Published online: 5 August 2003

PACS:

45.70.-n Granular systems - 83.50.Ax Steady shear flows, viscometric flow - 83.10.Pp Particle dynamics

S. Luding: New address: Particle Technology, DelftChemTech, TU Delft, Julianalaan 136, 2628 BL Delft, The Netherlands;

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lätzel, M., Luding, S., Herrmann, H.J. et al. Comparing simulation and experiment of a 2D granular Couette shear device. Eur. Phys. J. E 11, 325–333 (2003). https://doi.org/10.1140/epje/i2002-10160-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2002-10160-7

Keywords

Navigation