Skip to main content
Log in

The mobility of the amorphous phase in polyethylene as a determining factor for slow crack growth

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Polyethylene (PE) pipes generally exhibit a limited lifetime, which is considerably shorter than their chemical degradation period. Slow crack growth failure occurs when pipes are used in long-distance water or gas distribution though being exposed to a pressure lower than the corresponding yield stress. This slow crack growth failure is characterized by localized craze growth and craze fibril rupture. In the literature, the lifetime of PE pipes is often considered as being determined by the density of tie chains connecting adjacent crystalline lamellae. But this consideration cannot explain the excellent durability of the recent bimodal grade PE for pipe application. We show in this paper the importance of the craze fibril length as the determining factor for the pipe lifetime. The conclusions are drawn from stress analysis. It is found that longer craze fibrils sustain lower stress and are deformed to a lesser degree. The mobility of the amorphous phase is found to control the amount of material that can be “sucked” in by the craze fibrils and thus the length of the craze fibrils. The mobility of the amorphous phase can be monitored by dynamic mechanical analysis measurements. Excellent agreement between the mobility thus derived and lifetimes of PE materials as derived from FNCT (full notch creep test) is given, thus providing an effective means to estimate the lifetime of PE pipes by considering well-defined physical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.L. Böhm, H.-F. Enderle, M. Fleißner, Adv. Mater. 4, 234 (1992).

    Article  Google Scholar 

  2. J. Scheirs, L.L. Böhm, J.C. Boot, P.S. Leevers, Trends Polym. Sci. (TRIP) 4, 408 (1996).

    Google Scholar 

  3. H.B.H. Hamouda, M. Simoes-betbeder, F. Grillon, P. Blouet, N. Billon, R. Piques, Polymer 42, 5425 (2001).

    Article  Google Scholar 

  4. G. Strobl, The Physics of Polymers, 2nd edition (Springer, Berlin, 1997).

  5. A. Lustiger, R.D. Corneliussen, J. Mater. Sci. 22, 2470 (1987).

    Google Scholar 

  6. I. Narisawa, M. Ishikawa, in Advances in Polymer Science, edited by H.H. Kausch (Springer, Berlin, 1990) pp. 353.

  7. L.J. Rose, A.D. Channell, C.J. Frye, G. Capaccio, J. Appl. Polym. Sci. 54, 2119 (1994).

    Article  Google Scholar 

  8. J.M. Lagaron, N.M. Dixon, D.L. Gerrard, W. Reed, B.J. Kip, Macromolecules 31, 5845 (1998).

    Article  Google Scholar 

  9. L. Hubert, L. David, R. Sèguèla, G. Vigier, C. Corrfias-Zuccalli, Y. Germain, J. Appl. Polym. Sci. 84, 2308 (2002).

    Article  Google Scholar 

  10. A. Lustiger, N. Ishikawa, J. Polym. Sci. B Polym. Phys. 29, 1047 (1991).

    Article  Google Scholar 

  11. N. Brown, X. Lu, Y.L. Huang, R. Qian, Makromol. Chem. Makromol. Symp. 41, 55 (1991).

    MATH  Google Scholar 

  12. Y.L. Huang, N. Brown, J. Polym. Sci. B Polym. Phys. 28, 2007 (1990).

    Article  Google Scholar 

  13. Y.L. Huang, N. Brown, J. Polym. Sci. B Polym. Phys. 29, 129 (1991).

    Article  Google Scholar 

  14. G.R. Strobl, Acta Crystallogr. A 26, 367 (1970).

    Article  Google Scholar 

  15. M. Fleißner, Kunststoffe 77, 45 (1987).

    Google Scholar 

  16. K.J. Pascoe, in Failure of Plastics, edited by W. Brostow, R.D. Corneliussen (Hanser Publisher, Munich, 1986) pp. 119.

  17. C.E. Inglish, Trans. Inst. Naval Archit. 55, 219 (1913).

    Google Scholar 

  18. G.H. Michler, R. Godehardt, Cryst. Research Tech. 35, 863 (2000).

    Article  Google Scholar 

  19. R.N. Haward, G. Thackray, Proc. R. Soc. London, Ser. A 302, 453 (1968).

    Google Scholar 

  20. R.N. Haward, Macromolecules 26, 5860 (1993).

    CAS  Google Scholar 

  21. Y. Men, G. Strobl, Macromolecules 36, 1889 (2003).

    Article  Google Scholar 

  22. Y.F. Men, J. Rieger, G. Strobl, Phys. Rev. Lett. 91, 095502 (2003).

    Article  Google Scholar 

  23. Y. Men, PhD Thesis, University of Freiburg (2001).

  24. Q. Fu, Y. Men, G. Strobl, Polymer 44, 1941 (2003).

    Article  Google Scholar 

  25. W. Brostow, M. Fleißner, W.F. Müller, Polymer 32, 419 (1991).

    Article  Google Scholar 

  26. Y. Men, G. Strobl, J. Macromol. Sci. Phys. B 40, 775 (2001).

    Article  Google Scholar 

  27. Y. Men, G. Strobl, Chin. J. Polym. Sci. 20, 161 (2002).

    Google Scholar 

  28. Y.F. Men, J. Rieger, H.-F. Ederle, D. Lilge, Macromolecules 36, 4689 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Men, Y.F., Rieger, J., Enderle, H.F. et al. The mobility of the amorphous phase in polyethylene as a determining factor for slow crack growth. Eur. Phys. J. E 15, 421–425 (2004). https://doi.org/10.1140/epje/i2004-10059-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2004-10059-3

PACS.

Navigation