Skip to main content
Log in

Tuneable micro- and nano-periodic structures in a free-standing flexible urethane/urea elastomer film

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We have studied the control and manipulation of tuneable equilibrium structures in a free-standing urethane/urea elastomer film by means of atomic force microscopy, small-angle light scattering and polarising optical microscopy. The urethane/urea elastomer was prepared by reacting a poly(propyleneoxide)-based triisocyanate-terminated prepolymer (PU) with poly(butadienediol) (PBDO), with a weight ratio of 60% PU/40% PBDO. An elastomer film was shear-cast onto a glass plate and allowed to cure, first in an oven, then in air. Latent micro- and nano-periodic patterns are induced by ultra-violet (UV) irradiation of the film and can be “developed” by applying a plane uniaxial stress or by immersing the elastomer in an appropriate solvent and then drying it. For this elastomer we describe six pattern states, how they are related and how they can be manipulated. The morphological features of the UV-exposed film surface can be tuned, reproducibly and reversibly, by switching the direction of the applied mechanical field. Elastomers extracted in toluene exhibit different surface patterns depending upon the state in which they were developed. Stress-strain data collected for the films before and after UV irradiation reveal anisotropy induced by the shear-casting conditions and enhanced by the mechanical field. We have interpreted our results by assuming the film to consist of a thin, stiff surface layer (“skin”) lying atop a thicker, softer substrate (“bulk”). The skin's higher stiffness is hypothesised to be due to the more extensive cross-linking of chains located near the surface by the UV radiation. Patterns would thus arise as a competition between the effects of bending the skin and stretching/compressing the bulk, as in the work of Cerda and Mahadevan (Phys. Rev. Lett. 90, 074302 (2003)). We present some preliminary results of a simulation of this model using the Finite Element package ABAQUS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Koulic, R. Jérôme, Macromolecules 37, 888 (2004).

    Google Scholar 

  2. T.L. Morkved, M. Lu, A.M. Urbas, E.E. Ehrichs, H.M. Jaeger, P. Mansky, T.P. Russel, Science 931, 273 (1996).

    Google Scholar 

  3. M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, M. Shelley, Nat. Mater. 3, 307 (2004).

    Article  ADS  Google Scholar 

  4. G. Evmenenko, C.J. Yu, S. Kewalramani, P. Dutta, Langmuir 20, 1698 (2004).

    Article  Google Scholar 

  5. N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whitesides, Nature 393, 146 (1998).

    Article  ADS  Google Scholar 

  6. N. Stutzmann, T.A. Tervoort, K. Bastiaansen, P. Smith, Nature 407, 613 (2000).

    Article  ADS  Google Scholar 

  7. M. Watanabe, H. Shirai, T. Hirai, J. Appl. Phys. 92, 4631 (2002).

    Article  ADS  Google Scholar 

  8. S.R. Quake, A. Scherer, Science 290, 1536 (2000).

    Article  ADS  Google Scholar 

  9. N.A. Peppas, R. Langer, Science 263, 1715 (1994).

    Article  ADS  Google Scholar 

  10. W.T.S. Huck, N. Bowden, P. Onck, T. Pardoen, J.W. Hutchinson, G.M. Whitesides, Langmuir 16, 3497 (2000).

    Article  Google Scholar 

  11. S.P. Lacour, S. Wagner, Z. Huang, Z. Suo, Appl. Phys. Lett. 82, 2404 (2003).

    Article  ADS  Google Scholar 

  12. P.J. Yoo, H.H. Lee, Phys. Rev. Lett. 91, 154502 (2003).

    Article  ADS  Google Scholar 

  13. P.J. Yoo, K.Y. Suh, H. Kang, H.H. Lee, Phys. Rev. Lett. 93, 034301 (2004).

    Article  ADS  Google Scholar 

  14. J.S. Sharp, R.A.L. Jones, Phys. Rev. E 66, 011801 (2002).

    Article  MathSciNet  ADS  Google Scholar 

  15. J.S. Sharp, D. Vader, J.A. Forrest, M.I. Smith, M. Khomenko, K. Dalnoki-Veress, Eur. Phys. J. E 19, 423 (2006).

    Article  Google Scholar 

  16. C. Jiang, S. Markutsya, V.V. Tsukruk, Adv. Mater. 16, 157 (2004).

    Article  Google Scholar 

  17. C. Jiang, S. Markutsya, Y. Pikus, V.V. Tsukruk, Nat. Mater. 3, 721 (2004).

    Article  ADS  Google Scholar 

  18. S.L. Cooper, A.V. Tobolsky, J. Appl. Polym. Sci. 10, 1837 (1966).

    Article  Google Scholar 

  19. I.D. Fridman, E.L. Thomas, Polymer 21, 388 (1980).

    Article  Google Scholar 

  20. F. Yeh, B.S. Hsiao, B.B. Sauer, S. Michel, H.W. Siesler, Macromolecules 36, 1940 (2003).

    Article  Google Scholar 

  21. M.J. O'Sickel, B.D. Lawrey, G.L. Wilkes, J. Appl. Polym. Sci. 84, 229 (2002).

    Article  Google Scholar 

  22. M. Hasegawa, T. Ikawa, M. Tsuchimori, O. Watanabe, Y. Kawata, Macromolecules 34, 7471 (2001).

    Article  Google Scholar 

  23. C. Park, J. Yoon, E.L. Thomas, Polymer 44, 6725 (2003).

    Article  Google Scholar 

  24. E.A. Moschou, S.F. Peteu, L.G. Bachas, M.J. Madou, S. Daunert, Chem. Mater. 16, 2499 (2004).

    Article  Google Scholar 

  25. M. Park, C. Harrison, P.M. Chaikin, R.A. Register, D.H. Adamson, Science 276, 1401 (1997).

    Article  Google Scholar 

  26. L. Leibler, Macromolecules 13, 1602 (1980).

    Article  Google Scholar 

  27. A.L. Gamboa, E.J.M. Filipe, P. Brogueira, Nano Lett. 2, 1083 (2002).

    Article  Google Scholar 

  28. T. Kaneko, K. Yamaoka, Y. Osada, J.P. Gong, Macromolecules 37, 5385 (2004).

    Article  Google Scholar 

  29. J. Fu, B. Luan, X. Yu, Y. Cong, J. Li, C. Pan, Y. Han, Y. Yang, B. Li, Macromolecules 37, 976 (2004).

    Google Scholar 

  30. D.P. Queiroz, M.N. de Pinho, C. Dias, Macromolecules 36, 4195 (2003).

    Article  Google Scholar 

  31. A.C. Trindade, M.H. Godinho, J.L. Figueirinhas, Polymer 45, 5551 (2004).

    Article  Google Scholar 

  32. M.H. Godinho, J.L. Figueirinhas, C.-T. Zhao, M.N. de Pinho, Macromolecules 33, 7675 (2000).

    Article  Google Scholar 

  33. M. Warner, E.M. Terentjev, Liquid Crystal Elastomers (Clarendon Press, Oxford, 2003).

  34. M.H. Godinho, L.V. Melo, P. Brogueira, Mater. Sci. Eng. C 23, 919 (2003).

    Article  Google Scholar 

  35. M.H. Godinho, A.C. Trindade, J.L. Figueirinhas, D. Vidal, L.V. Melo, P. Brogueira, Synth. Met. 147, 209 (2004).

    Article  Google Scholar 

  36. C.T. Zhao, M.N. de Pinho, Polymer 40, 6089 (1999).

    Article  Google Scholar 

  37. D.P. Queiroz, M.C. Gonçalves, M.N. Pinho, J. Appl. Polym. Sci. 103, 315 (2007).

    Article  Google Scholar 

  38. E. Cerda, L. Mahadevan, Phys. Rev. Lett. 90, 074302 (2003).

    Article  ADS  Google Scholar 

  39. L.D. Landau, L.M. Lifshitz, Theory of Elasticity, 3rd ed. (Pergamon Press, New York, 1986).

  40. K. Efimenko, M. Rackaitis, E. Manias, A. Vaziri, L. Mahadevan, J. Genzer, Nat. Mater. 4, 293 (2005).

    Article  ADS  Google Scholar 

  41. E. Sharon, B. Roman, M. Marder, G.-S. Shin, H.L. Swinney, Nature 419, 579 (2002).

    Article  ADS  Google Scholar 

  42. http://www.abaqus.com or http://www.hks.com.

  43. R. Huang, Z. Suo, Int. J. Solids Struct. 39, 1791 (2002).

    Article  MATH  Google Scholar 

  44. R. Huang, J. Mech. Phys. Solids 53, 63 (2005).

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Godinho, M.H., Trindade, A.C., Figueirinhas, J.L. et al. Tuneable micro- and nano-periodic structures in a free-standing flexible urethane/urea elastomer film. Eur. Phys. J. E 21, 319–330 (2006). https://doi.org/10.1140/epje/i2006-10070-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2006-10070-8

PACS.

Navigation