Skip to main content
Log in

Memory effect in isothermal crystallization of syndiotactic polypropylene --Role of melt structure and dynamics?

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The crystalline-memory effect on the crystallization of syndiotactic polypropylene is investigated by differential scanning calorimetry and solid-state NMR spectroscopy. The influence of several parameters in the thermal (pre-)treatment and the crystallization conditions is studied in detail. In agreement with previous reports, the power law behavior of the overall crystal growth rate is found to be remarkably different for melts with and without memory. This has previously been interpreted in terms of changes in the structure and/or the dynamics of the melt (disentangled state, local order), and a variety of NMR experiments is used to detect such potential changes. All our NMR results are identical for melts with and without memory, therefore excluding any large effect of the “memory” on melt structure or dynamics exceeding the percent level of the whole sample volume, and thus supporting more conventional interpretations in terms of persisting nuclei. Samples that were pre-crystallized at lower temperatures exhibit a larger memory effect, and the potential nuclei fraction is a non-equilibrium structure and is restricted to the 0.1% level if it is crystalline or highly ordered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.P. Price, J. Am. Chem. Soc. 74, 311 (1952).

    Article  Google Scholar 

  2. D. Turnbull, J. Chem. Phys. 18, 198 (1950).

    Article  ADS  Google Scholar 

  3. D.J. Blundell, A. Keller, Polym. Lett. 4, 481 (1966).

    Article  Google Scholar 

  4. G. Vidotto, D. Lévy, A.J. Kovacs, Kolloid-Z. Z. Polym. 230, 289 (1969).

    Article  Google Scholar 

  5. J.H. Reinshagen, R.W. Dunlap, J. Appl. Polym. Sci. 17, 3619 (1973).

    Article  Google Scholar 

  6. E. Turska, S. Gogolewski. J. Appl. Polym. Sci. 19, 637 (1975).

    Article  Google Scholar 

  7. B. Fillon, J.C. Wittmann, B. Lotz, A. Thierry, J. Polym. Sci. B, Polym. Phys. 31, 1383 (1993).

    Article  Google Scholar 

  8. B. Fillon, A. Thierry, J.C. Wittmann, B. Lotz, J. Polym. Sci. B, Polym. Phys. 31, 1407 (1993).

    Article  Google Scholar 

  9. G.C. Alfonso, A. Ziabicki, Colloid Polym. Sci. 273, 317 (1995).

    Article  Google Scholar 

  10. P. Supaphol, J.E. Spruiell, J. Appl. Polym. Sci. 75, 337 (2000).

    Article  Google Scholar 

  11. P. Supaphol, J.-S. Lin, Polymer 42, 9617 (2001).

    Article  Google Scholar 

  12. L. Sisti, L. Finelli, N. Lotti, C. Berti, A. Munari, e-Polymers 054 (2003).

  13. A. Ziabicki, G.C. Alfonso, Colloid Polym. Sci. 272, 1027 (1994).

    Article  Google Scholar 

  14. M.V. Massa, M.S.M. Lee, K. Dalnoki-Veress, J. Polym. Sci. B., Polym. Phys. 43, 3438 (2005).

    Article  Google Scholar 

  15. C.W.M. Bastiaansen, H.E.H. Meyer, P.J. Lemstra, Polymer 31, 1435 (1990).

    Article  Google Scholar 

  16. M. Psarski, E. Piorkowska, A. Galeski, Macromolecules 33, 916 (2000).

    Article  ADS  Google Scholar 

  17. M. Al-Hussein, G. Strobl, Eur. Phys. J. E 6, 305 (2001).

    Article  Google Scholar 

  18. K. Cho, D.N. Saheb, J. Choi, H. Yang. Polymer 43, 1407 (2002).

    Article  Google Scholar 

  19. S. Yamazaki, M. Hikosaka, A. Toda, I. Wataoka, F. Gu, Polymer 43, 6585 (2002).

    Article  Google Scholar 

  20. B. Heck, G. Strobl, Colloid Polym. Sci. 282, 511 (2004).

    Article  Google Scholar 

  21. A. Häfele, B. Heck, T. Hippler, T. Kawai, P. Kohn, G. Strobl, Eur. Phys. J. E 16, 217 (2005).

    Article  Google Scholar 

  22. S. Rastogi, D.R. Lippits, G.W.M. Peters, R. Graf, Y. Yao, H.W. Spiess, Nat. Mater. 4, 635 (2005).

    Article  ADS  Google Scholar 

  23. A.T. Lorenzo, M.L. Arnal, J.J. Sánchez, A.J. Müller, J. Polym. Sci. B., Polym. Phys. 44, 1738 (2006).

    Article  Google Scholar 

  24. S. Yamazaki, F. Gu, K. Watanabe, K. Okada, A. Toda, M. Hikosaka, Polymer 47, 6422 (2006).

    Article  Google Scholar 

  25. D.R. Lippits, S. Rastogi, G.W.H. Höhne, B. Mezari, P.C.M.M. Magusin, Macromolecules 40, 1004 (2007).

    Article  ADS  Google Scholar 

  26. G.C. Alfonso, P. Scardigli, Macromol. Symp. 1183, 323 (1997).

    Google Scholar 

  27. Y. Men, G. Strobl, J. Macromol. Sci. Phys. B 40, 775 (2001).

    Article  Google Scholar 

  28. N. Billon, C. Magnet, J.M. Haudin, D. Lefebvre, Colloid Polym. Sci. 272, 633 (1994).

    Article  Google Scholar 

  29. A. Maus, C. Hertlein, K. Saalwächter, Macromol. Chem. Phys. 207, 1150 (2006).

    Article  Google Scholar 

  30. C. Hertlein, K. Saalwächter, G. Strobl, Polymer 47, 7216 (2006).

    Article  Google Scholar 

  31. B. Wunderlich, Macromolecular Physics, Vol. 2: Crystal Nucleation, Growth, Annealing (Academic Press, New York and London, 1976).

  32. L. Mandelkern, Crystallization of Polymers, 2nd edition, Vol. 2: Kinetics and Mechanisms (Cambridge University Press, Cambridge, 2004).

  33. J. Schaefer, E.O. Stejskal, J. Am. Chem. Soc. 98, 1031 (1976).

    Article  Google Scholar 

  34. A. Bielecki, D.P. Burum, J. Magn. Reson. A 116, 215 (1995).

    Article  Google Scholar 

  35. A. Maus, Order Phenomena in Polymer Crystallization, Dissertation, Universität Freiburg (2005).

  36. W.-K. Rhim, A. Pines, J.S. Waugh, Phys. Rev. B 3, 684 (1971).

    Article  ADS  Google Scholar 

  37. S. Matsui, Chem. Phys. Lett. 179, 187 (1991).

    Article  ADS  Google Scholar 

  38. J.P. Cohen-Addad, J. Chem. Phys. 60, 2440 (1973).

    Article  ADS  Google Scholar 

  39. M.G. Brereton, Macromolecules 23, 1119 (1990).

    Article  ADS  Google Scholar 

  40. J.P. Cohen Addad, Prog. Nucl. Magn. Reson. Spectrosc. 25, 1 (1993).

    Article  Google Scholar 

  41. P.G. Klein, M.E. Ries, Prog. Nucl. Magn. Reson. Spectrosc. 42, 31 (2003).

    Article  Google Scholar 

  42. R. Graf, A. Heuer, H.W. Spiess, Phys. Rev. Lett. 80, 5738 (1998).

    Article  ADS  Google Scholar 

  43. K. Saalwächter, P. Ziegler, O. Spyckerelle, B. Haidar, A. Vidal, J.-U. Sommer, J. Chem. Phys. 119, 3468 (2003).

    Article  ADS  Google Scholar 

  44. K. Saalwächter, A. Heuer, Macromolecules 39, 3291 (2006).

    Article  ADS  Google Scholar 

  45. K. Saalwächter, Prog. Nucl. Magn. Reson. Spectrosc. 51, 1 (2007).

    Article  Google Scholar 

  46. A.J. Lovinger, D.D. Davis, B. Lotz, Macromolecules 24, 552 (1991).

    Article  ADS  Google Scholar 

  47. A.E. Tonelli, NMR Spectroscopy and Polymer Microstructure: The Conformational Connection (VCH, Weinheim, 1989).

  48. P. Sozzani, R. Simonutti, M. Galimberti, Macromolecules 26, 5782 (1993).

    Article  ADS  Google Scholar 

  49. N.V. Pogodina, H.H. Winter, Macromolecules 31, 8164 (1998).

    Article  ADS  Google Scholar 

  50. T. Bremner, A. Rudin, J. Polym. Sci. B, Polym. Phys. 30, 1247 (1992).

    Article  Google Scholar 

  51. H.P. Blom, J.W. Teh, T. Bremner, A. Rudin, Polymer 39, 4011 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maus, A., Hempel, E., Thurn-Albrecht, T. et al. Memory effect in isothermal crystallization of syndiotactic polypropylene --Role of melt structure and dynamics?. Eur. Phys. J. E 23, 91–101 (2007). https://doi.org/10.1140/epje/i2007-10183-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2007-10183-6

PACS.

Navigation