Skip to main content
Log in

The kinetics of the structural relaxation process in PHEMA-silica nanocomposites based on an equation for the configurational entropy

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The enthalpy relaxation of polymer-silica nanocomposites prepared by simultaneous polymerization of poly(2-hydroxyethyl methacrylate) (PHEMA) and tetraethyloxysilane, TEOS, a silica precursor, is investigated. Both the glass transition temperature, Tg, and the temperature interval of the glass transition, ΔT g , increase as the silica content in the sample does. Structural relaxation experiments show that the temperature interval in which conformational motions take place broadens as the silica content in the hybrid increases. A phenomenological model based on the evolution of the configurational entropy during the structural relaxation process, the SC model, has been used for determining the temperature dependence of the relaxation times during the process. The results show an increase of the fragility of the polymer as the silica content increases, a feature that can be related to the broadening of the distribution of relaxation times characterized by the β parameter of the stretched exponential distribution. On another hand the silica content increase produces a significant change of the relaxation times in the glassy state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Hutchinson, Prog. Polym. Sci. 20, 703 (1995).

    Article  Google Scholar 

  2. I.M. Hodge, J. Non-Cryst. Solids 169, 211 (1994).

    Article  Google Scholar 

  3. C.T. Moynihan, P.B. Macedo, C.J. Montrose, P.K. Gupta, M.A. DeBolt, J.F. Dill, B.E. Dom, P.W. Drake, A.J. Easteal, P.B. Elterman, R.P. Moeller, H. Sasabe, Ann. N.Y. Acad. Sci. 279, 15 (1976).

    Article  Google Scholar 

  4. O.S. Narayanaswamy, J. Am. Ceram. Soc. 54, 491 (1971).

    Article  Google Scholar 

  5. A.J. Kovacs, J.J. Aklonis, J.M. Hutchinson, A.R. Ramos, J. Polym. Sci., Polym. Phys. Ed. 17, 1097 (1979).

    Article  Google Scholar 

  6. G.W. Scherer, J. Am. Ceram. Soc. 67, 504 (1984).

    Article  Google Scholar 

  7. J.L. Gómez Ribelles, M. Monleón Pradas, Macromolecules 28, 5867 (1995).

    Article  Google Scholar 

  8. J.L. Gómez Ribelles, M. Monleón Pradas, A. Vidaurre Garayo, F. Romero Colomer, J. Más Estelles, J.M. Meseguer Dueñas, Macromolecules 28, 5878 (1995).

    Article  Google Scholar 

  9. S.E.B. Petrie, J. Polym. Sci. Part A-2: Polym. Phys. 10, 1255 (1972).

    Article  Google Scholar 

  10. J.L. Gómez Ribelles, A. Ribes Greus, R. Díaz Calleja, Polymer 31, 223 (1991).

    Article  Google Scholar 

  11. J.M.G. Cowie, R. Ferguson, Polymer 34, 2135 (1993).

    Article  Google Scholar 

  12. P. Hajji, L. David, J.F. Gerard, J.P. Pascault, G. Vigier, J. Polym. Sci. B: Polym. Phys. 37, 3172 (1999).

    Article  Google Scholar 

  13. S.L. Huang, W.K. Chin, W.P. Yang, Polymer 46, 1865 (2005).

    Article  Google Scholar 

  14. M. Motomatsu, T. Takahashi, H.Y. Nie, W. Mizutani, H. Tokumoto, Polymer 38, 177 (1997).

    Article  Google Scholar 

  15. L. Guo, J.H. Lee, G. Beaucage, J. Non-Cryst. Solids 243, 61 (1999).

    Article  Google Scholar 

  16. J.M. Breiner, J.E. Mark, G. Beaucage, J. Polym. Sci. B: Polym. Phys. 37, 1421 (1999).

    Article  Google Scholar 

  17. H. Lu, S. Nutt. Macromol. Chem. Phys. 204, 1832 (2003).

    Article  Google Scholar 

  18. H.B. Lutt, S. Nutt. Macromolecules 36, 4010 (2003).

    Article  Google Scholar 

  19. J.M. Meseguer Dueñas, A. Vidaurre Garayo, F.J. Romero Colomer, J. Más Estelles, J.L. Gómez Ribelles, M. Monleón Pradas, J. Polym. Sci. B: Polym. Phys. 35, 2201 (1997).

    Article  Google Scholar 

  20. J.L. Gómez Ribelles, M. Monleón Pradas, A. Vidaurre Garayo, F. Romero Colomer, J. Más Estelles, J.M. Meseguer Dueñas, Polymer 38, 963 (1995).

    Google Scholar 

  21. S. Monserrat, J.L. Gómez Ribelles, J.M. Meseguer Dueñas, Polymer 16, 3801 (1998).

    Article  Google Scholar 

  22. J.M.G. Cowie, S. Harris, J.L. Gómez Ribelles, J.M. Meseguer Dueñas, F. Romero Colomer, C. Torregrosa, Macromolecules 32, 4430 (1999).

    Article  Google Scholar 

  23. F. Hernádez Sánchez, J.M. Meseguer Dueñas, J.L. Gómez Ribelles, J. Therm. Anal. Calorim. 72, 631 (2003).

    Article  Google Scholar 

  24. M. Salmerón Sánchez, Y. Touzé, A. Saiter, J.M. Saiter, J.L. Gómez Ribelles, Colloid. Polym. Sci. 283, 711 (2005).

    Article  Google Scholar 

  25. L. Andreozzi, M. Faetti, F. Zulli, M. Giordano, Eur. Phys. J. B 41, 383 (2004).

    Article  ADS  Google Scholar 

  26. L. Andreozzi, M. Faetti, M. Giordano, F. Zulli, Macromolecules 38, 6056 (2005).

    Article  Google Scholar 

  27. G. Williams, D.C. Watts, Trans. Faraday. Soc. 66, 80 (1970).

    Article  Google Scholar 

  28. G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965).

    Article  Google Scholar 

  29. J.H. Gibbs, E.A. DiMarzio, J. Chem. Phys. 28, 373 (1958).

    Article  Google Scholar 

  30. J.M. Hutchinson, P. Kumar, Thermochim. Acta 391, 197 (2002).

    Article  Google Scholar 

  31. Q. Li, S.L. Simon, Polymer 47, 4781 (2006).

    Article  Google Scholar 

  32. F.W. Starr, T.B. Schoroder, S.C. Glotzer, Phys. Rev. E. 64, 021802 (2001).

    Article  ADS  Google Scholar 

  33. P. Rittingstein, J.M. Torkelson, J. Polym. Sci. B: Polym. Phys. 44, 2935 (2006).

    Article  Google Scholar 

  34. A. Bansal, H. Yang, C. Li, K. Cho, B.C. Benicewicz, S.K. Kumar, L.S. Schadler, Nat. Mater. 4, 693 (2005).

    Article  ADS  Google Scholar 

  35. A. Bansal, H. Yang, C. Li, B. Benicewicz, S.K. Kumar, L.S. Schadler, J. Polym. Sci. B: Polym. Phys. 44, 2944 (2006).

    Article  Google Scholar 

  36. J.L. Gómez Ribelles, J.M. Meseguer Dueñas, C. Torregrosa Cabanilles, M. Monleón Pradas, J. Phys: Condens. Matter 14, 1149 (2003).

    Article  Google Scholar 

  37. N.M. Alves, J. Mano, E. Balaguer, J.M. Meseguer Dueñas, J.L. Gómez Ribelles, Polymer 43, 4111 (2002).

    Article  Google Scholar 

  38. J.A. Gómez Tejedor, J.C. Rodríguez Hernández, J.L. Gómez Ribelles, M. Monleón Pradas, J. Macromol. Sci. B: Phys. 46, 43 (2007).

    Article  Google Scholar 

  39. A. Saiter, J.M. Oliver, J.M. Saiter, J.L. Gómez Ribelles, Polymer 45, 2743 (2004).

    Article  Google Scholar 

  40. C.A. Angell, J. Non-Cryst. Solids 3, 131 (1991).

    Google Scholar 

  41. J.C. Rodríguez Hernández, M. Salmerón Sánchez, J.L. Gómez Ribelles, M. Monleón Pradas, Eur. Polym. J., 43, 2775 (2007).

  42. H. Vogel, Phys. Z. 22, 645 (1921).

    Google Scholar 

  43. G.A. Fulcher, J. Am. Chem. Soc. 8, 339 (1925).

    Google Scholar 

  44. G. Tamman, W. Hesse, Z. Anorg. Allg. Chem. 156, 245 (1926).

    Article  Google Scholar 

  45. C.A. Angell, J. Non-Cryst. Solids 13, 131 (1991).

    Google Scholar 

  46. C.A. Angell, Annu. Rev. Phys. Chem. 43, 693 (1992).

    Article  Google Scholar 

  47. R. Böhmer, K.L. Ngai, C.A. Angell, D.J. Plazek, J. Chem. Phys. 99, 4201 (1993).

    Article  ADS  Google Scholar 

  48. D.J. Plazek, K.L. Ngai, Macromolecules 24, 1222 (1991).

    Article  Google Scholar 

  49. R. Bömer, K.L. Ngai, C.A. Angell, D.J. Plazek, J. Chem. Phys. 99, 4201 (1993).

    Article  Google Scholar 

  50. G. Williams, I.K. Smith, G.A. Aldridge, P.A. Holmes, S. Varma, Macromolecules 34, 7197 (2001).

    Article  Google Scholar 

  51. S. Kalakkunnath, D.S. Kalika, H.Q. Lin, B.D. Freeman, Macromolecules 38, 9679 (2005).

    Article  Google Scholar 

  52. N.M. Alves, J.L.G. Ribelles, J.A.G. Tejedor, J.F. Mano, Macromolecules 37, 3735 (2004).

    Article  Google Scholar 

  53. A. Bello, E. Laredo, M. Grimau, Phys. Rev. B 60, 12764 (1999).

    Article  ADS  Google Scholar 

  54. C.T. Moynihan, A.J. Easteal, M.A. DeBolt, J. Tucker, J. Am. Ceram. Soc. 59, 12 (1976).

    Article  Google Scholar 

  55. Z. Fakhraai, J.A. Forrest, Phys. Rev. Lett. 95, 025701 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Théneau, C., Salmerón Sánchez, M., Rodrıguez Hernández, J.C. et al. The kinetics of the structural relaxation process in PHEMA-silica nanocomposites based on an equation for the configurational entropy. Eur. Phys. J. E 24, 69–77 (2007). https://doi.org/10.1140/epje/i2007-10214-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2007-10214-4

PACS.

Navigation