Skip to main content
Log in

Single-particle thermal diffusion of charged colloids: Double-layer theory in a temperature gradient

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The double-layer contribution to the single-particle thermal diffusion coefficient of charged, spherical colloids with arbitrary double-layer thickness is calculated and compared to experiments. The calculation is based on an extension of the Debye-Hückel theory for the double-layer structure that includes a small temperature gradient. There are three forces that constitute the total thermophoretic force on a charged colloidal sphere due to the presence of its double layer: i) the force F W that results from the temperature dependence of the internal electrostatic energy W of the double layer, ii) the electric force F el with which the temperature-induced non-spherically symmetric double-layer potential acts on the surface charges of the colloidal sphere and iii) the solvent-friction force F sol on the surface of the colloidal sphere due to the solvent flow that is induced in the double layer because of its asymmetry. The force F W will be shown to reproduce predictions based on irreversible-thermodynamics considerations. The other two forces F el and F sol depend on the details of the temperature-gradient-induced asymmetry of the double-layer structure which cannot be included in an irreversible-thermodynamics treatment. Explicit expressions for the thermal diffusion coefficient are derived for arbitrary double-layer thickness, which complement the irreversible-thermodynamics result through the inclusion of the thermophoretic velocity resulting from the electric- and solvent-friction force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Wiegand, J. Phys.: Condens. Matter 16, R357 (2004).

  2. J.K.G. Dhont, S. Wiegand, S. Duhr, D. Braun, Langmuir 23, 1674 (2007).

    Article  Google Scholar 

  3. S. Duhr, D. Braun, Proc. Natl. Acad. Sci. U.S.A. 103, 19678 (2006).

    Article  Google Scholar 

  4. E. Bringuier, A. Bourdon, Phys. Rev. E 67, 011404 (2003).

    Article  ADS  Google Scholar 

  5. S. Fayolle, T. Bickel, S. Le Boiteux, A Würger, Phys. Rev. Lett. 95, 208301 (2005).

    Article  ADS  Google Scholar 

  6. N.G. van Kampen, J. Phys. Chem. Solids 49, 673 (1988).

    Article  Google Scholar 

  7. J.C. Giddings, P.M. Shinudu, S.N. Semenov, J. Colloid Interface Sci. 176, 454 (1995).

    Article  Google Scholar 

  8. S.N. Semenov, M. Schimpf, Phys. Rev. E 69, 011201 (2004).

    Article  ADS  Google Scholar 

  9. K.I. Morozov, J. Exp. Theor. Phys. 88, 944 (1999).

    Article  ADS  Google Scholar 

  10. A. Parola, R. Piazza, Eur. Phys. J. E 15, 255 (2004).

    Article  ADS  Google Scholar 

  11. E. Rückenstein, J. Colloid Interface Sci. 83, 77 (1981).

    Article  Google Scholar 

  12. R. Piazza, A. Guarino, Phys. Rev. Lett. 88, 208302 (2002).

    Article  ADS  Google Scholar 

  13. E.J.W. Verwey, J.Th.G. Overbeek, Theory of the Stability of Lyophobic Colloids (Dover publications, New York, 1999).

  14. J.K.G. Dhont, J. Chem. Phys. 120, 1642 (2004).

    Article  ADS  Google Scholar 

  15. LL.G. Chambers, A Course in Vector Analysis (Chapman and Hall, and Science Paperbacks, New York, 1974).

  16. M. Teubner, J. Chem. Phys. 76, 5564 (1982).

    Article  ADS  Google Scholar 

  17. J.K.G. Dhont, An Introduction to Dynamics of Colloids (Elsevier, Amsterdam, 1996).

  18. G.A. Schumacher, T.G.M. van de Ven, Faraday Discuss. Chem. Soc. 83, 75 (1987).

    Article  Google Scholar 

  19. F. Booth, J. Chem. Phys. 22, 1956 (1954).

    Article  ADS  Google Scholar 

  20. M.G. McPhie, G. Nägele, J. Phys.: Condens. Matter 16, S4021 (2004).

  21. E. Bringuier, Philos. Mag. 87, 873 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. G. Dhont.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhont, J.K.G., Briels, W.J. Single-particle thermal diffusion of charged colloids: Double-layer theory in a temperature gradient. Eur. Phys. J. E 25, 61–76 (2008). https://doi.org/10.1140/epje/i2007-10264-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2007-10264-6

PACS.

Navigation