Skip to main content
Log in

Nanodroplets on rough hydrophilic and hydrophobic surfaces

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We present results of Molecular Dynamics (MD) calculations on the behavior of liquid nanodroplets on rough hydrophobic and hydrophilic solid surfaces. On hydrophobic surfaces, the contact angle for nanodroplets depends strongly on the root-mean-square roughness amplitude, but it is nearly independent of the fractal dimension of the surface. Since increasing the fractal dimension increases the short-wavelength roughness, while the long-wavelength roughness is almost unchanged, we conclude that for hydrophobic interactions the short-wavelength (atomistic) roughness is not very important. We show that the nanodroplet is in a Cassie-like state. For rough hydrophobic surfaces, there is no contact angle hysteresis due to strong thermal fluctuations, which occur at the liquid-solid interface on the nanoscale. On hydrophilic surfaces, however, there is strong contact angle hysteresis due to higher energy barrier. These findings may be very important for the development of artificially biomimetic superhydrophobic surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Young, Philos. Trans. R. Soc. London, Ser. A 95, 65 (1805).

    Google Scholar 

  2. P.S. Laplace, Oeuvres (Imprimerie Royale, Paris, 1847).

  3. J. Rowlinson, B. Widom, Molecular Theory of Capillarity (Oxford University Press, Oxford, 1982).

  4. P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).

    Article  ADS  Google Scholar 

  5. D. Quere, Rep. Prog. Phys. 68, 2495 (2005).

    Article  ADS  Google Scholar 

  6. T.S. Chow, J. Phys.: Condens. Matter 10, L445 (1998).

  7. N.A. Patankar, Langmuir 19, 1249 (2003).

    Article  Google Scholar 

  8. W. Chen, Langmuir 15, 3395 (1999).

    Article  Google Scholar 

  9. M. Callies, D. Quere, Soft Matter 1, 55 (2005).

    Article  Google Scholar 

  10. L.W. Schwartz, S. Garoff, Langmuir 1, 219 (1985).

    Article  Google Scholar 

  11. C. Yang, U. Tartaglino, B.N.J. Persson, Phys. Rev. Lett. 97, 116103 (2006).

    Article  ADS  Google Scholar 

  12. C.W. Extrand, S.I. Moon, P. Hall, D. Schmidt, Langmuir 23, 8882 (2007).

    Article  Google Scholar 

  13. C. Yang, U. Tartaglino, B.N.J. Persson, J. Phys.: Condens. Matter 50, 11521 (2006).

    Article  ADS  Google Scholar 

  14. S.L. Ren, S.R. Yang, Y.P. Zhao, T.X. Yu, X.D. Xiao, Surf. Sci. 546, 64 (2003).

    Article  ADS  Google Scholar 

  15. M. Nosonovsy, B. Bhushan, Microsyst. Technol. 11, 535 (2005).

    Article  Google Scholar 

  16. See http://www.lotus-effect.com for information involving surface roughness in relation to hydrophobicity and surface self-cleaning in biological systems.

  17. W. Barthlott, C. Neinhuis, Planta 202, 1 (1997).

    Article  Google Scholar 

  18. C. Neinhuis, W. Barthlott, Ann. Botany 79, 667 (1997).

    Article  Google Scholar 

  19. A. Otten, S. Herminghaus, Langmuir 20, 2405 (2004).

    Article  Google Scholar 

  20. S. Schibuichi, T. Onda, N. Satoh, K. Tsujii, J. Phys. Chem. 100, 19512 (1996).

    Article  Google Scholar 

  21. R. Blossey, Nature Mat. 2, 301 (2003).

    Article  ADS  Google Scholar 

  22. N.A. Patankar, Langmuir 20, 8209 (2004).

    Article  Google Scholar 

  23. Y.T. Cheng, D.E. Rodak, Appl. Phys. Lett. 86, 144101 (2005).

    Article  ADS  Google Scholar 

  24. A. Nakajima, K. Hashimoto, T. Watanabe, Monatsh. Chem. 132, 31 (2001).

    Google Scholar 

  25. S.R. Coulson, L. Woodward, J.P.S. Badyal, S.A. Brewer, C. Willis, J. Phys. Chem. B 104, 8836 (2000).

    Article  Google Scholar 

  26. H.Y. Erbil, A.L. Demirel, Y. Avci, O. Mert, Science 299, 1377 (2003).

    Article  Google Scholar 

  27. R.N. Wenzel, Ind. Eng. Chem. 28, 988 (1936).

    Article  Google Scholar 

  28. A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944).

    Article  Google Scholar 

  29. R.E. Johnson, R.H. Dettre, J. Phys. Chem. 68, 1744 (1964).

    Article  Google Scholar 

  30. A. Dupuis, J.M. Yeomans, Langmuir 21, 2624 (2005).

    Article  Google Scholar 

  31. M. Suzuki, Carbon 32, 577 (1994).

    Article  Google Scholar 

  32. T.J. Barton, Chem. Mater. 11, 2633 (1999).

    Article  Google Scholar 

  33. J. Bico, C. Marzolin, D. Quere, Europhys. Lett. 47, 220 (1999).

    Article  ADS  Google Scholar 

  34. G. Carbone, L. Mangialardi, Eur. Phys. J. E 16, 67 (2005).

    Article  Google Scholar 

  35. The surface energy of a liquid does, in fact, also depend on the magnification because of thermally excited capillary waves which contribute to the surface energy of a liquid. However, the dependence of $\gamma_{\ab{lv}}(\zeta)$ on the magnification $\zeta$ is rather weak and we will neglect this effect in the present study.

  36. Here we assume that the surface free energy per unit area does not depend on the orientation of the substrate surface, which may be a reasonable approximation for many amorphous materials, but which in general fails for crystalline materials.

  37. B.N.J. Persson, Eur. Phys. J. E 8, 385 (2002).

    Google Scholar 

  38. S. Herminghaus, Europhys. Lett. 52, 165 (2000).

    Article  ADS  Google Scholar 

  39. A. Lafuma, D. Quere, Nature Mat. 2, 457 (2003).

    Article  ADS  Google Scholar 

  40. X. Gao, L. Jiang, Nature 432, 36 (2004). See also R.B. Suter, G.E. Stratton, P.R. Miller, J. Arachnol. 32, 11 (2004).

    Article  ADS  Google Scholar 

  41. C. Yang, U. Tartaglino, B.N.J. Persson, Eur. Phys. J. E 19, 47 (2006).

    Article  Google Scholar 

  42. V.N. Samoilov, B.N.J. Persson, J. Chem. Phys. 120, 1997 (2004).

    Article  ADS  Google Scholar 

  43. W.I. Jorgensen, J.D. Madura, C.J. Swenson, J. Am. Chem. Soc. 106, 6638 (1984).

    Article  Google Scholar 

  44. D.K. Dysthe, A.H. Fuchs, B. Rousseau, J. Chem. Phys. 112, 7581 (2000).

    Article  ADS  Google Scholar 

  45. U. Tartaglino, I.M. Sivebaek, B.N.J. Persson, E. Tosatti, J. Chem. Phys. 125, 014704 (2006).

    Article  ADS  Google Scholar 

  46. B.N.J. Persson, O. Albohl, U. Tartaglino, V.I. Volokitin, E. Tosatti, J. Phys.: Condens. Matter 17, R1 (2005).

  47. C. Yang, B.N.J. Persson, Phys. Rev. Lett. 100, 024303 (2008).

    Article  ADS  Google Scholar 

  48. B.N.J. Persson, E. Tosatti, J. Chem. Phys. 115, 5597 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Tartaglino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C., Tartaglino, U. & Persson, B.N.J. Nanodroplets on rough hydrophilic and hydrophobic surfaces. Eur. Phys. J. E 25, 139–152 (2008). https://doi.org/10.1140/epje/i2007-10271-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2007-10271-7

PACS.

Navigation