Skip to main content
Log in

An elasto-visco-plastic model for immortal foams or emulsions

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

A variety of complex fluids consists in soft, round objects (foams, emulsions, assemblies of copolymer micelles or of multilamellar vesicles--also known as onions). Their dense packing induces a slight deviation from their prefered circular or spherical shape. As a frustrated assembly of interacting bodies, such a material evolves from one conformation to another through a succession of discrete, topological events driven by finite external forces. As a result, the material exhibits a finite yield threshold. The individual objects usually evolve spontaneously (colloidal diffusion, object coalescence, molecular diffusion), and the material properties under low or vanishing stress may alter with time, a phenomenon known as aging. We neglect such effects to address the simpler behaviour of (uncommon) immortal fluids: we construct a minimal, fully tensorial, rheological model, equivalent to the (scalar) Bingham model. Importantly, the model consistently describes the ability of such soft materials to deform substantially in the elastic regime (be it compressible or not) before they undergo (incompressible) plastic creep--or viscous flow under even higher stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Landau, E.M. Lifshitz, Theory of Elasticity, 3rd edition (Butterworth-Heinemann, London, 1995).

  2. J. Friedel, Dislocations (Addison-Weskey Publishing Co., Inc., Reading MA, 1983).

  3. C. Kittel, Physique de l'état solide, 5th edition (Dunod, Paris, 1983).

  4. D. Weaire, S. Hutzler, The Physics of Foams (Oxford University Press, New York, 1999).

  5. P. Coussot, C. Ancey, Rhéophysique des pâtes et des suspensions (EDP Sciences, Les Ulis, France, 1999).

  6. P. Coussot, Rheometry of pastes, suspensions and granular materials (Wiley, New York, 2005).

  7. L. Cipeletti, L. Ramos, Curr. Opin. Colloid Interface Sci. 7, 228 (2002).

    Article  Google Scholar 

  8. M. Cloitre, R. Borrega, L. Leibler, Phys. Rev. Lett. 85, 4819 (2000).

    Article  ADS  Google Scholar 

  9. S. Cohen-Addad, R. Höhler, Y. Khidas, Phys. Rev. Lett. 93, 028302 (2004).

    Article  ADS  Google Scholar 

  10. E. Eiser, F. Molino, G. Porte, X. Pithon, Rheol. Acta 39, 201 (2000).

    Article  Google Scholar 

  11. E. Eiser, F. Molino, G. Porte, O. Diat, Phys. Rev. E 61, 6759 (2000).

    Article  ADS  Google Scholar 

  12. J.-F. Berret, D.C. Roux, G. Porte, Eur. Phys. J. E 4, 1261 (1994).

    Google Scholar 

  13. J.P. Decruppe, S. Lerouge, J.-F. Berret, Phys. Rev. E 63, 022501 (1999).

    Article  ADS  Google Scholar 

  14. G. Porte, J.-F. Berret, J. Harden, J. Phys. II 7, 459 (1997).

    Article  Google Scholar 

  15. C.-Y. David Lu, P.D. Olmsted, R.C. Ball, Phys. Rev. E 84, 642 (2000).

    ADS  Google Scholar 

  16. S. Lerouge, M. Argentina, J.P. Decruppe, Phys. Rev. Lett. 96, 088301 (2006).

    Article  ADS  Google Scholar 

  17. L. Bécu, S. Manneville, A. Colin, Phys. Rev. Lett. 93, 018301 (2004).

    Article  ADS  Google Scholar 

  18. J.-F. Berret, Y. Séréro, Phys. Rev. Lett. 87, 048303 (2001).

    Article  ADS  Google Scholar 

  19. F. Molino, J. Appell, M. Filali, E. Michel, G. Porte, S. Mora, E. Sunyer, J. Phys.: Condens. Matter 12, A491 (2000).

  20. G. Debrégeas, H. Tabuteau, J.-M. di Meglio, Phys. Rev. Lett. 87, 178305 (2001).

    Article  ADS  Google Scholar 

  21. A. Kabla, G. Debrégeas, Phys. Rev. Lett. 90, 258303 (2003).

    Article  ADS  Google Scholar 

  22. A. Kabla, J. Scheibert, G. Debrégeas, J. Fluid Mech. 587, 45 (2007).

    MathSciNet  MATH  Google Scholar 

  23. V.V. Bulatov, A.S. Argon, Modelling Simul. Mater. Sci. Eng. 2, 167 (1994).

    Article  ADS  Google Scholar 

  24. V.V. Bulatov, A.S. Argon, Modelling Simul. Mater. Sci. Eng. 2, 185 (1994).

    Article  ADS  Google Scholar 

  25. V.V. Bulatov, A.S. Argon, Modelling Simul. Mater. Sci. Eng. 2, 203 (1994).

    Article  ADS  Google Scholar 

  26. M.L. Falk, J.S. Langer, Phys. Rev. E 57, 7192 (1998).

    Article  ADS  Google Scholar 

  27. G. Picard, A. Ajdari, F. Lequeux, L. Bocquet, Eur. Phys. J. E 15, 371 (2004).

    Article  Google Scholar 

  28. G. Picard, A. Ajdari, F. Lequeux, L. Bocquet, Phys. Rev. E 71, 010501 (2005).

    Article  ADS  Google Scholar 

  29. M. Aubouy, Y. Jiang, J.A. Glazier, F. Graner, Granular Matter 5, 67 (2003).

    Article  MATH  Google Scholar 

  30. M. Asipauskas, M. Aubouy, J.A. Glazier, F. Graner, Y. Jiang, Granular Matter 5, 71 (2003).

    Article  MATH  Google Scholar 

  31. P. Marmottant, F. Graner, Eur. Phys. J. E 23, 337 (2007).

    Article  Google Scholar 

  32. O. Takeshi, K. Sekimoto, Phys. Rev. Lett. 95, 108301 (2005).

    Article  ADS  Google Scholar 

  33. P. Saramito, J. Non-Newtonian Fluid Mechanics 145, 1 (2007).

    Article  Google Scholar 

  34. A.M. Kraynik, D.A. Reinelt, ``Microrheology of random polydisperse foam'' in Proceedings of the XIV International Congress on Rheology (The Korean Society of Rheology, 2004).

  35. V. Mora, Étude de l'intégration temporelle du tenseur taux de déformation. Application à la modélisation de l'élastoplasticité en grandes transformations, PhD thesis, Université de Bretagne Sud, Lorient, France, 2004.

  36. S. Benito, in preparation.

  37. R.J. Gordon, W.R. Schowalter, Trans. Soc. Rheol. 16, 79 (1972).

    Article  ADS  Google Scholar 

  38. A. Bertram, Elasticity and Plasticity of large deformations (Springer, Berlin, Heidelberg, New York, 2005).

  39. R. Höhler, S. Cohen-Addad, J. Phys.: Condens. Matter 17, R1041 (2005).

  40. R. Höhler, S. Cohen-Addad, V. Labiausse, J. Rheol. 48, 679 (2004).

    Article  ADS  Google Scholar 

  41. S.A. Khan, C.A. Schnepper, R.C. Armstrong, J. Rheol. 32, 69 (1988).

    Article  ADS  Google Scholar 

  42. F. Graner, B. Dollet, C. Raufaste, P. Marmottant, Statistical tools to characterize discrete rearranging patterns, in 2 or 3 dimensions: cellular materials, assemblies of particles, preprint, 2007.

  43. J. Goyon, A. Colinans, G. Ovarlez, A. Ajdari, L. Bocquet, Microfluidic velocimetry reveals spatial cooperativity in the flow of soft glassy materials, in preparation.

  44. S. Marze, A. Saint-Jalmes, D. Langevin, Colloids Surf. A 263, 121 (2005).

    Article  Google Scholar 

  45. J. Emile, E. Hardy, A. Saint-Jalmes, E. Terriac, R. Delannay, Colloids Surf. A 304, 72 (2007).

    Article  Google Scholar 

  46. E. Terriac, J. Etrillard, I. Cantat, Europhys. Lett. 74, 909 (2006).

    Article  ADS  Google Scholar 

  47. C.R. Myers, B.E. Shaw, J.S. Langer, Phys. Rev. Lett. 77, 972 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Molino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bénito, S., Bruneau, C.H., Colin, T. et al. An elasto-visco-plastic model for immortal foams or emulsions. Eur. Phys. J. E 25, 225–251 (2008). https://doi.org/10.1140/epje/i2007-10284-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2007-10284-2

PACS.

Navigation