Skip to main content
Log in

Collective alignment of polar filaments by molecular motors

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We study the alignment of polar biofilaments, such as microtubules and actin, subject to the action of multiple molecular motors attached simultaneously to more than one filament. Focusing on a paradigm model of only two filaments interacting with multiple motors, we were able to investigate in detail the alignment dynamics. While almost no alignment occurs in the case of a single motor, the filaments become rapidly aligned due to the collective action of the motors. Our analysis shows that the alignment time is governed by the number of bound motors and the magnitude of the motors’ stepping fluctuations. We predict that the time scale of alignment is in the order of seconds, much faster than that reported for passive crosslink-induced bundling. In vitro experiments on the alignment of microtubules by multiple-motor covered beads are in qualitative agreement. We also discuss another mode of fast alignment of filaments, namely the cooperation between motors and passive crosslinks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Lodish, Molecular Cell Biology (W. H. Freeman, New York, 1999).

  2. K. Takiguchi, J. Biochem. 109, 520 (1991).

    Google Scholar 

  3. R. Urrutia, M.A. McNiven, J.P. Albanesi, D.B. Murphy, B. Kachar, Proc. Natl. Acad. Sci. U.S.A. 88, 6701 (1991).

    Google Scholar 

  4. F.J. Nédélec, T. Surrey, A.C. Maggs, S. Leibler, Nature 389, 305 (1997).

  5. T. Surrey, F. Nédélec, S. Leibler, E. Karsenti, Science 292, 116 (2001).

  6. D. Smith, F. Ziebert, D. Humphrey, C. Duggan, M. Steinbeck, W. Zimmermann, J. Käs, Biophys. J. 93, 4445 (2007).

    Google Scholar 

  7. K. Kruse, J.F. Joanny, F. Jülicher, J. Prost, K. Sekimoto, Phys. Rev. Lett. 92, 078101 (2004).

    Google Scholar 

  8. I.S. Aranson, L.S. Tsimring, Phys. Rev. E 74, 031915 (2006).

    Google Scholar 

  9. F.C. MacKintosh, A.J. Levine, Phys. Rev. Lett. 100, 018104 (2008).

    Google Scholar 

  10. H. Nakazawa, K. Sekimoto, J. Phys. Soc. Jpn. 65, 2404 (1996).

    Google Scholar 

  11. K. Kruse, F. Jülicher, Phys. Rev. E 67, 051913 (2003).

    Google Scholar 

  12. R. Peter, V. Schaller, F. Ziebert, W. Zimmermann, New J. Phys. 10, 035002 (2008).

    Google Scholar 

  13. M.M.A.E. Claessens, M. Bathe, E. Frey, A.R. Bausch, Nature Mater. 5, 748 (2006).

    Google Scholar 

  14. O. Lieleg, M.M.A.E. Claessens, C. Heussinger, E. Frey, A.R. Bausch, Phys. Rev. Lett. 99, 088102 (2007).

    Google Scholar 

  15. D. Vignjevic, D. Yarar, M.D. Welch, J. Peloquin, T. Svitkina, G.G. Borisy, J. Cell Biol. 160, 951 (2003).

    Google Scholar 

  16. J. Kierfeld, J.T. Kühne, R. Lipowsky, Phys. Rev. Lett. 95, 038102 (2005).

    Google Scholar 

  17. J. Uhde, M. Keller, E. Sackmann, A. Parmeggiani, E. Frey, Phys. Rev. Lett. 93, 268101 (2004).

    Google Scholar 

  18. L.C. Kapitein, E.J.G. Peterman, B.H. Kwok, J.H. Kim, T.M. Kapoor, C.F. Schmidt, Nature 435, 114 (2005).

  19. M. Vershinin, B.C. Carter, D.S. Razafsky, S.J. King, S.P. Gross, Proc. Natl. Acad. Sci. U.S.A. 104, 87 (2007).

    Google Scholar 

  20. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986).

  21. S. Klumpp, R. Lipowsky, Proc. Natl. Acad. Sci. U.S.A. 102, 17284 (2005).

    Google Scholar 

  22. O. Campás, Y. Kafri, K.B. Zeldovich, J. Casademunt, J.-F. Joanny, Phys. Rev. Lett. 97, 038101 (2006).

    Google Scholar 

  23. K. Visscher, M.J. Schnitzer, S.M. Block, Nature 400, 184 (1999).

  24. C.M. Coppin, D.W. Pierce, L. Hsu, R.D. Vale, Proc. Natl. Acad. Sci. U.S.A. 94, 8539 (1997).

    Google Scholar 

  25. A. Parmeggiani, F. Jülicher, L. Peliti, J. Prost, Europhys. Lett. 56, 603 (2001).

    Google Scholar 

  26. S.W. Grill, K. Kruse, F. Jülicher, Phys. Rev. Lett. 94, 108104 (2005).

    Google Scholar 

  27. C.M. Coppin, J.T. Finer, J.A. Spudich, R.D. Vale, Biophys. J. 68, 242s (1995).

  28. F.J. Nédélec, J. Cell Biol. 158, 1005 (2002).

    Google Scholar 

  29. F. Ziebert, I.S. Aranson, Phys. Rev. E 77, 011918 (2008).

    Google Scholar 

  30. F. Gittes, B. Mickey, J. Nettleton, J. Howard, J. Cell Biol. 120, 923 (1993).

    Google Scholar 

  31. D. Karpeev, I.S. Aranson, L.S. Tsimring, H.G. Kaper, Phys. Rev. E 76, 051905 (2007).

    Google Scholar 

  32. H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1989).

  33. To simplify the integrals, in analytical calculations we extended the limits of integration to infinity. We verified that this leads only to small quantitative changes.

  34. The complete dependence reads ($\zeta=p_d-\alpha/2$) equation* f()=-2p_a^2[1-p_d ()erfc]. equation*

  35. F. Ziebert, I.S. Aranson, L.S. Tsimring, New J. Phys. 9, 421 (2007).

    Google Scholar 

  36. A. Parmeggiani, T. Franosch, E. Frey, Phys. Rev. Lett. 90, 086601 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ziebert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziebert, F., Vershinin, M., Gross, S.P. et al. Collective alignment of polar filaments by molecular motors. Eur. Phys. J. E 28, 401–409 (2009). https://doi.org/10.1140/epje/i2008-10434-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2008-10434-0

PACS

Navigation