Skip to main content
Log in

Apparent viscosity and particle pressure of a concentrated suspension of non-Brownian hard spheres near the jamming transition

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We consider the steady shear flow of a homogeneous and dense assembly of hard spheres suspended in a Newtonian viscous fluid. In a first part, a mean-field approach based on geometric arguments is used to determine the viscous dissipation in a dense isotropic suspension of smooth hard spheres and the hydrodynamic contribution to the suspension viscosity. In a second part, we consider the coexistence of transient solid clusters coupled to regions with free flowing particles near the jamming transition. The fraction of particles in transient clusters is derived through the Landau-Ginzburg concepts for first-order phase transition with an order parameter corresponding to the proportion of “solid” contacts. A state equation for the fraction of particle-accessible volume is introduced to derive the average normal stresses and a constitutive law that relates the total shear stress to the shear rate. The analytical expression of the average normal stresses well accounts for numerical or experimental evaluation of the particle pressure and non-equilibrium osmotic pressure in a dense sheared suspension. Both the friction level between particles and the suspension dilatancy are shown to determine the singularity of the apparent shear viscosity and the flow stability near the jamming transition. The model further predicts a Newtonian behavior for a concentrated suspension of neutrally buoyant particles and no shear thinning behavior in relation with the shear liquefaction of transient solid clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, Ann. Phys. (Leipzig) 19, 289 (1906); 34, 591 (1911).

    ADS  Google Scholar 

  2. G.K. Batchelor, J.T. Green, J. Fluid Mech. 56, 401 (1972).

    Article  MATH  ADS  Google Scholar 

  3. C.W.J. Beenaker, Physica A. 128, 48 (1984).

    Article  ADS  Google Scholar 

  4. P. Mazur, W. van Saarloos, Physica A 115, 21 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  5. J.F. Brady, G. Bossis, J. Fluid Mech. 155, 105 (1985).

    Article  ADS  Google Scholar 

  6. J.F. Brady, J. Fluid Mech. 98, 3335 (1993).

    Google Scholar 

  7. J.W. Bender, N.J. Wagner, J. Colloid Interface Sci. 172, 171 (1995).

    Article  Google Scholar 

  8. M. Lenoble, B. Pouligny, P. Snabre, Phys. Fluids 17, 073303 (2005).

    Article  ADS  Google Scholar 

  9. G. Ovarlez, F. Bertrand, S. Rodts, J. Rheol. 50, 259 (2006).

    Article  ADS  Google Scholar 

  10. C. Bonnoit, J. Lanuza, A. Lindner, E. Clément, AIP Conf. Proc. 1027, 737 (2008).

    Article  ADS  Google Scholar 

  11. A. Deboeuf, G. Gauthier, J. Martin, Y. Yurkovetsky, J.F. Morris, Phys. Rev. Lett. 102, 108301 (2009).

    Article  ADS  Google Scholar 

  12. P. Lemaitre, J.N. Roux, F. Chevoir, Rheol. Acta 48, 925 (2009).

    Article  Google Scholar 

  13. F. da Cruz, F. Chevoir, D. Bonn, P. Coussot, Phys. Rev. E 66, 051305 (2002).

    Article  ADS  Google Scholar 

  14. L. Heymann, S. Peukert, N. Akel, Rheol. Acta 41, 307 (2002).

    Article  Google Scholar 

  15. N. Huang, G. Ovarlez, F. Bertrand, S. Rodts, P. Coussot, D. Bonn, Phys. Rev. Lett. 94, 028301 (2005).

    Article  ADS  Google Scholar 

  16. J.F. Brady, J.F. Morris, J. Fluid Mech. 348, 103 (1997).

    Article  MATH  ADS  Google Scholar 

  17. J.F. Morris, J.F. Brady, Int. J. Multiphase Flow 24, 105 (1998).

    Article  MATH  Google Scholar 

  18. Y. Yurkovetsky, J.F. Morris, J. Rheol. 52, 141 (2008).

    Article  ADS  Google Scholar 

  19. P. Snabre, P. Mills, Eur. Phys. J. E 1, 105 (2000).

    Article  Google Scholar 

  20. J.J. Stickel, R.J. Phillips, R.L. Powell, J. Rheol. 50, 379 (2006).

    Article  ADS  Google Scholar 

  21. S.H. Maron, P.E. Pierce, J. Colloid Interface Sci. 11, 80 (1956).

    Google Scholar 

  22. N. Huang, D. Bonn, J. Fluid Mech. 590, 497 (2007).

    Article  MATH  ADS  Google Scholar 

  23. By fitting viscosity measurements with a Krieger-Dougherrty model \(ða_H = ða_0 (1 - ☎i / ☎i *) {-2.5☎i_m}\), the exponent n = −2.5ϕ m is not determined independently of the critical volume fraction ϕ*.

  24. P. Mills, D. Loggia, M. Tixier, Europhys. Lett. 6, 783 (1999).

    Google Scholar 

  25. D. Volfson, L.S. Tsimring, I.S. Aranson, Phys. Rev. E 68, 021301 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  26. P. Mills, P. Rognon, F. Chevoir, EPL 81, 64005 (2008).

    Article  ADS  Google Scholar 

  27. F. da Cruz, S. Eman, S. Roux, M. Prochnow, J.N. Roux, F. Chevoir, Phys. Rev. E. 72, 021309 (2005).

    Article  ADS  Google Scholar 

  28. C. Cassar, M. Nicolas, O. Pouliquen, Phys. Fluids 17, 103301 (2005).

    Article  ADS  Google Scholar 

  29. F. da Cruz, Ecoulement de grains secs: frottement et blocage, thèse Ponts et Chaussées ENPC (http://pastel. paristech.org/archive/00000946/) (2004).

  30. P. Rognon, J.N. Roux, M. Naaïm, F. Chevoir, J. Fluid Mech. 596, 21 (2008).

    Article  MATH  ADS  Google Scholar 

  31. R.J. Wilson, R.H. Davis, J. Fluid Mech. 421, 339 (2000).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. P.W. Rowe, Proc. R. Soc. London, Ser. A 269, 500 (1962).

    Article  ADS  Google Scholar 

  33. P.G. de Gennes, J. Phys. (Paris) 40, 783 (1979).

    Google Scholar 

  34. A. Singh, P.R. Nott, J. Fluid Mech. 412, 279 (2000).

    Article  MATH  ADS  Google Scholar 

  35. A. Sierou, J.F. Brady, J. Rheol. 46, 1031 (2002).

    Article  ADS  Google Scholar 

  36. I.E. Zarraga, D.A. Hill, D.T. Leighton, J. Rheol. 44, 185 (2000).

    Article  ADS  Google Scholar 

  37. J.F. Morris, F. Boulay, J. Rheol. 43, 1213 (1999).

    Article  ADS  Google Scholar 

  38. A. Fall, Rhéophysique des fluides complexes: Ecoulement et Blocage de suspensions concentrées, thèse de l'Université Paris 7 (http://tel.archives-ouvertes.fr/tel-00322449/) (2008).

  39. A. Fall, F. Bertrand, G. Ovarlez, D. Bonn, to be published in Phys. Rev. Lett. (2009) arXiv:0907.2106v1 [condmat.soft].

  40. E. Bertrand, J. Bibette, V. Schmitt, Phys. Rev. E 66, 060401 (2002).

    Article  ADS  Google Scholar 

  41. D. Lootens, H. van Damme, Y. Hémar, P. Hébraud, Phys. Rev. Lett. 95, 268302 (2005).

    Article  ADS  Google Scholar 

  42. P. Hébraud, Rheol. Acta 48, 845 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Snabre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mills, P., Snabre, P. Apparent viscosity and particle pressure of a concentrated suspension of non-Brownian hard spheres near the jamming transition. Eur. Phys. J. E 30, 309 (2009). https://doi.org/10.1140/epje/i2009-10530-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2009-10530-7

PACS

Navigation