Skip to main content
Log in

Why does shear banding behave like first-order phase transitions? Derivation of a potential from a mechanical constitutive model

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Numerous numerical and experimental evidence suggest that shear banding behavior looks like first-order phase transitions. In this paper, we demonstrate that this correspondence is actually established in the so-called non-local diffusive Johnson-Segalman model (the DJS model), a typical mechanical constitutive model that has been widely used for describing shear banding phenomena. In the neighborhood of the critical point, we apply the reduction procedure based on the center manifold theory to the governing equations of the DJS model. As a result, we obtain a time evolution equation of the flow field that is equivalent to the time-dependent Ginzburg-Landau (TDGL) equations for modeling thermodynamic first-order phase transitions. This result, for the first time, provides a mathematical proof that there is an analogy between the mechanical instability and thermodynamic phase transition at least in the vicinity of the critical point of the shear banding of DJS model. Within this framework, we can clearly distinguish the metastable branch in the stress-strain rate curve around the shear banding region from the globally stable branch. A simple extension of this analysis to a class of more general constitutive models is also discussed. Numerical simulations for the original DJS model and the reduced TDGL equation is performed to confirm the range of validity of our reduction theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Rehage, H. Hoffmann, Mol. Phys. 74, 933 (1991)

    Article  ADS  Google Scholar 

  2. M.E. Cates, M. Fielding, Adv. Phys. 55, 799 (2006)

    Article  ADS  Google Scholar 

  3. N.A. Spenley, M.E. Cates, T.C. McLeish, Phys. Rev. Lett. 71, 939 (1993)

    Article  ADS  Google Scholar 

  4. C. Grand, J. Arrault, M.E. Cates,, J. Phys. II 7, 1071 (1997)

    Article  Google Scholar 

  5. J.P. Decruppe, R. Cressely, R. Makhloufi, E. Cappelaere, Colloid Polym. Sci. 273, 346 (1995)

    Article  Google Scholar 

  6. R.W. Mair, P.T. Callaghan, Europhys. Lett. 36, 719 (1996)

    Article  ADS  Google Scholar 

  7. S. Lerouge, J.P. Decruppe, C. Humbert, Phys. Rev. Lett. 81, 5457 (1998)

    Article  ADS  Google Scholar 

  8. J.B. Salmon, A. Colin, S. Manneville, Phys. Rev. Lett. 90, 228303 (2003)

    Article  ADS  Google Scholar 

  9. X.F. Yuan, Europhys. Lett. 46, 542 (1999)

    Article  ADS  Google Scholar 

  10. C.Y.D. Lu, P.D. Olmsted, R.C. Ball, Phys. Rev. Lett. 84, 642 (2000)

    Article  ADS  Google Scholar 

  11. S.M. Fielding, Phys. Rev. Lett. 95, 134501 (2005)

    Article  ADS  Google Scholar 

  12. J.K.G. Dhont, Phys. Rev. E 60, 4534 (1999)

    Article  ADS  Google Scholar 

  13. M. Doi, A. Onuki, J. Phys. II 2, 1631 (1992)

    Article  Google Scholar 

  14. X.F. Yuan, L. Jupp, Europhys. Lett. 60, 691 (2002)

    Article  ADS  Google Scholar 

  15. S.M. Fielding, P.D. Olmsted, Phys. Rev. Lett. 90, 224501 (2003)

    Article  ADS  Google Scholar 

  16. H. Mori, Y. Kuramoto, Dissipative Structures and Chaos (Springer-Verlag, Berlin, 1998)

  17. H. Haken, Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices (Springer-Verlag, Berlin, 1983)

  18. M. Johnson, D. Segalman, J. Non-Newtonian Fluid Mech. 2, 255 (1977)

    Article  MATH  Google Scholar 

  19. A.W. El-Kareh, L.G. Leal, J. Non-Newtonian Fluid Mech. 33, 257 (1989)

    Article  MATH  Google Scholar 

  20. P.D. Olmsted, O. Radulescu, C.Y.D. Lu, J. Rheol. 44, 257 (2000)

    Article  ADS  Google Scholar 

  21. D.S. Malkus, J.A. Nohel, B.J. Plohr, J. Comput. Phys. 87, 464 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. O. Radulescu, P.D. Olmsted, J.P. Decruppe, S. Lerouge, J.F. Berret, G. Porte, Europhys. Lett. 62, 230 (2003)

    Article  ADS  Google Scholar 

  23. J. Yerushalmi, S. Katz, R. Shinnar, Chem. Eng. Sci. 25, 1891 (1970)

    Article  Google Scholar 

  24. P. Espanol, X.F. Yuan, R.C. Ball, J. Non-Newtonian Fluid Mech. 65, 93 (1996)

    Article  Google Scholar 

  25. L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon Press, Oxford, 1980)

  26. K. Kawasaki, M. Suzuki, A. Onuki, Formation, Dynamics and Statistics of Pattern (World Scientific, Singapore, 1990)

  27. K. Kawasaki, T. Koga, Prog. Theor. Phys. Suppl. 99, 339 (1989)

    Article  ADS  Google Scholar 

  28. H. Hayakawa, T. Koga, J. Phys. Soc. Jpn. 59, 3542 (1990)

    Article  ADS  Google Scholar 

  29. S. Noguchi, T. Ohta, J. Phys. Soc. Jpn. 72, 1315 (2003)

    Article  MATH  ADS  Google Scholar 

  30. O. Radulescu, P.D. Olmsted, J. Non-Newtonian Fluid Mech. 91, 143 (2000)

    Article  MATH  Google Scholar 

  31. J.M. Adams, P.D. Olmsted, Phys. Rev. Lett. 102, 067801 (2009)

    Article  ADS  Google Scholar 

  32. P.D. Olmsted, Rheol. Acta 47, 283 (2008)

    Article  Google Scholar 

  33. A.E. Likhtman, R.S. Graham, J. Non-Newtonian Fluid Mech. 114, 1 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, K., Yuan, X.F. & Kawakatsu, T. Why does shear banding behave like first-order phase transitions? Derivation of a potential from a mechanical constitutive model. Eur. Phys. J. E 31, 135–144 (2010). https://doi.org/10.1140/epje/i2010-10557-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2010-10557-7

Keywords

Navigation